日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在R上的函數(shù)f(x)=asinωx+bcosωx(ω>0)的周期為π,
          且對一切x∈R,都有f(x)數(shù)學(xué)公式;
          (1)求函數(shù)f(x)的表達(dá)式;
          (2)若g(x)=f(數(shù)學(xué)公式),求函數(shù)g(x)的單調(diào)增區(qū)間;
          (3)若函數(shù)y=f(x)-3的圖象按向量數(shù)學(xué)公式=(m,n) (|m|<數(shù)學(xué)公式)平移后得到一個(gè)奇函數(shù)的圖象,求實(shí)數(shù)m、n的值.

          解:(1)∵,又周期∴ω=2
          ∵對一切x∈R,都有f(x)
          解得:
          ∴f(x)的解析式為
          (2)∵(3)
          ∴g(x)的增區(qū)間是函數(shù)y=sin的減區(qū)間
          ∴由得g(x)的增區(qū)間為(k∈Z)(等價(jià)于
          (3)
          分析:(1)由輔助角公式,我們可將函數(shù)解析式化為正弦型函數(shù)的形式,結(jié)合函數(shù)f(x)的周期為π,對一切x∈R,都有f(x),我們可以構(gòu)造a,b,ω的方程,求出a,b,ω的后,即可得到函數(shù)f(x)的表達(dá)式;
          (2)根據(jù)g(x)=f(),求出函數(shù)g(x)的解析式,進(jìn)而根據(jù)正弦型函數(shù)的單調(diào)性,確定函數(shù)g(x)的單調(diào)增區(qū)間;
          (3)根據(jù)正弦型函數(shù)的平移法則,我們可以求出函數(shù)y=f(x)-3的圖象按向量=(m,n)平移后得到的圖象,由其為奇函數(shù),故原點(diǎn)為其對稱中心,根據(jù)正弦函數(shù)的對稱性,易得到實(shí)數(shù)m、n的值.
          點(diǎn)評:本題考查的知識點(diǎn)是正弦型函數(shù)解析式的求法,正弦型函數(shù)的單調(diào)性,正弦型函數(shù)的圖象變換,其中(1)的關(guān)鍵是根據(jù)已知構(gòu)造a,b,ω的方程,(2)的關(guān)鍵是求出函數(shù)g(x)的解析式,(3)的關(guān)鍵是利用函數(shù)的對稱性,得到原點(diǎn)為其對稱中心.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在R上的函數(shù)y=f(x)滿足下列條件:
          ①對任意的x∈R都有f(x+2)=f(x);
          ②若0≤x1<x2≤1,都有f(x1)>f(x2);
          ③y=f(x+1)是偶函數(shù),
          則下列不等式中正確的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在R上的函數(shù)f(x)滿足:f(x)=
          f(x-1)-f(x-2),x>0
          log2(1-x),       x≤0
            則:
          ①f(3)的值為
          0
          0
          ,
          ②f(2011)的值為
          -1
          -1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
          1,(-1<x≤0)
          -1,(0<x≤1)
          ,則f(3)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在R上的函數(shù)f(x)是偶函數(shù),對x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為( 。
          A、-2B、2C、4D、-4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在R上的函數(shù)f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對稱,則f(2013)=( 。
          A、0B、2013C、3D、-2013

          查看答案和解析>>

          同步練習(xí)冊答案