日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐中,底面ABCD為矩形,AC、BD交于點O,PA平面ABCD,點E在線段PC上,PC平面BDE.

          1)求證:BD平面PAC;

          2)若,,求二面角的大小.

          【答案】1)見解析;(2arccos

          【解析】

          1)證明PABDPCBD即可證明BD⊥平面PAC

          2)由PC平面BDEBEO為二面角 BPCA的平面角,在RtBEO中,即可求解二面角BPCA的大。

          證明:(1)∵PA⊥平面ABCDBD平面ABCD

          PABD.同理由PC⊥平面BDE,可證得PCBD

          PAPCP,∴BD⊥平面PAC

          2)由PC⊥平面BDE,PCOE,PCBE則∠BEO為二面角 BPCA的平面角

          由(1)知BOACABCD為正方形∴AB2,AC=2,PC=3

          RtBEO中,,

          cosEFO

          ∴二面角BPCA的大小為arccos

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標(biāo)原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          (Ⅰ)當(dāng)時,求曲線上的點到直線的距離的最大值

          (Ⅱ)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          的單調(diào)區(qū)間;

          證明:其中e是自然對數(shù)的底數(shù),

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司的新能源產(chǎn)品上市后在國內(nèi)外同時銷售,已知第一批產(chǎn)品上市銷售40天內(nèi)全部售完,該公司對這批產(chǎn)品上市后的國內(nèi)外市場銷售情況進(jìn)行了跟蹤調(diào)查,如圖所示,其中圖①中的折線表示的是國外市場的日銷售量與上市時間的關(guān)系;圖②中的拋物線表示的是國內(nèi)市場的日銷售量與上市時間的關(guān)系;下表表示的是產(chǎn)品廣告費用、產(chǎn)品成本、產(chǎn)品銷售價格與上市時間的關(guān)系.

          (1)分別寫出國外市場的日銷售量、國內(nèi)市場的日銷售量與產(chǎn)品上市時間的函數(shù)關(guān)系式;

          (2)產(chǎn)品上市后的哪幾天,這家公司的日銷售利潤超過260萬元?

          (日銷售利潤=(單件產(chǎn)品銷售價-單件產(chǎn)品成本)×日銷售量-當(dāng)天廣告費用,)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知兩個定點,, 動點滿足,設(shè)動點的軌跡為曲線,直線.

          1)求曲線的軌跡方程;

          2)若與曲線交于不同的兩點,且 (為坐標(biāo)原點),求直線的斜率;

          3)若是直線上的動點,過作曲線的兩條切線、,切點為、,探究:直線是否過定點,若存在定點請寫出坐標(biāo),若不存在則說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】科學(xué)家發(fā)現(xiàn)某種特別物質(zhì)的溫度(單位:攝氏度)隨時間(時間:分鐘)的變化規(guī)律滿足關(guān)系式:).

          (1)若,求經(jīng)過多少分鐘,該物質(zhì)的溫度為5攝氏度;

          (2)如果該物質(zhì)溫度總不低于2攝氏度,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,正方形所在平面與正所在平面垂直,分別為的中點,在棱上.

          (1)證明:平面

          (2)已知,點的距離為,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點在雙曲線)上,且雙曲線的一條漸近線的方程是

          (1)求雙曲線的方程;

          (2)若過點且斜率為的直線與雙曲線有兩個不同的交點,求實數(shù)的取值范圍;

          (3)設(shè)(2)中直線與雙曲線交于兩個不同的點,若以線段為直徑的圓經(jīng)過坐標(biāo)原點,求實數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是一個菱形,三角形PAD是一個等腰三角形,∠BAD=∠PAD=,點E在線段PC上,且PE=3EC.

          (1)求證:AD⊥PB;

          (2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案