解:(1)由已知得:

=(y+1-lnx)

+


,由A、B、C共線得:
y+1-lnx+

=1,整理得:y=lnx+

(2)f(x)=lnx+

=lnx+

-

∴f′(x)=

-

≥0在x∈[1,+∞)上恒成立
∴a≥

在x∈[1,+∞)上的最大值,又

≤1
∴a≥1
證明:(3)當(dāng)a=1時(shí),f(x)=lnx+

-1
由(2)知當(dāng)x∈[1,+∞)時(shí),f(x)=lnx+

-1≥f(1)=0
∴l(xiāng)nx≥1-

(僅x=1時(shí)取“=”)
令x=

得:ln

>1-

,即:ln

>

∴l(xiāng)n

+ln

+ln

+…+ln

>

+

+

+…+

分析:(1)根據(jù)三點(diǎn)共線的充要條件,可得y+1-lnx+

=1,整理可得y=f(x)的表達(dá)式;
(2)若函數(shù)f(x)在[1,+∞)上為增函數(shù),則f′(x)≥0在x∈[1,+∞)上恒成立,進(jìn)而求出a的范圍;
(3)當(dāng)a=1時(shí),f(x)=lnx+

-1,結(jié)合(2)中函數(shù)的單調(diào)性,可得lnx≥1-

,令x=

得:ln

>

,進(jìn)而利用對(duì)數(shù)的運(yùn)算性質(zhì),可證得結(jié)論.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是不等式的證明,函數(shù)解析式的求法,導(dǎo)數(shù)法求函數(shù)的單調(diào)性,是函數(shù)與不等式問題的綜合應(yīng)用,難度較大.