日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),滿足:對(duì)任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時(shí),有f(x)≤
          1
          8
          (x+2)2
          成立,又f(-2)=0,則b為( 。
          分析:根據(jù)任意實(shí)數(shù)x,都有f(x)≥x,知f(2)≥2成立,當(dāng)x∈(1,3)時(shí),有f(x)≤
          1
          8
          (x+2)2
          成立,取x=2時(shí),f(2)≤2成立,從而f(2)=2,再利用f(-2)=0,即可求得b的值.
          解答:解:由條件對(duì)任意實(shí)數(shù)x,都有f(x)≥x,知f(2)≥2成立
          ∵當(dāng)x∈(1,3)時(shí),有f(x)≤
          1
          8
          (x+2)2
          成立,
          ∴取x=2時(shí),f(2)≤
          1
          8
          (2+2)2
          =2成立,
          ∴f(2)=2.
          ∴4a+2b+c=2①
          ∵f(-2)=0
          ∴4a-2b+c=0②
          由①②可得,∴4a+c=2b=1,
          ∴b=
          1
          2

          故選B.
          點(diǎn)評(píng):本題重點(diǎn)考查二次函數(shù)的解析式,考查賦值思想,對(duì)分析轉(zhuǎn)化的推理能力要求較高.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過(guò)原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
          (Ⅰ)求f(x)的表達(dá)式;
          (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問(wèn):是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過(guò)原點(diǎn),求f(x)的解析式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案