如圖,在四棱錐中,底面
是矩形,
,
,AB=2.M為PD的中點(diǎn).求直線(xiàn)PC與平面ABM所成的角的正弦值;
證:依題設(shè),為PD的中點(diǎn),PA=AD,PB=BD
,AM⊥PD.
,
.
設(shè)與
交于點(diǎn)
,
//
,
∥平面
,則AB//MN//CD,
由,則MN是PN在平面ABM上的射影,
所以 就是
與平面
所成的角,
且
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖,為空間四點(diǎn).在
中,
.等邊三角形
以
為軸運(yùn)動(dòng).
(1)當(dāng)平面平面
時(shí),求
;
(2)當(dāng)轉(zhuǎn)動(dòng)時(shí),證明總有
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,為圓
的直徑,點(diǎn)
、
在圓
上,且
,矩形
所在的平面和圓
所在的平面互相垂直,且
,
.
(Ⅰ)求證:平面
;
(Ⅱ)設(shè)的中點(diǎn)為
,求證:
平面
;
(Ⅲ)設(shè)平面將幾何體
分割成的兩個(gè)錐體的體積分別為
、
,求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直四棱柱中,已知
,
.
(1)求證:;
(2)設(shè)是
上一點(diǎn),試確定
的位置,使
平面
,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12)如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點(diǎn)D是AB的中點(diǎn)
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求二面角的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
在如圖所示的空間直角坐標(biāo)系中,一個(gè)四面體的頂點(diǎn)坐標(biāo)分別是(0,0,2),(2,2,0),(1,2,1),(2,2,2),給出編號(hào)①、②、③、④的四個(gè)圖,則該四面體的正視圖和俯視圖分別為( )
A.①和② | B.③和① | C.④和③ | D.④和② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分15分)四棱錐P-ABCD中,PA⊥平面ABCD,E為AD的中點(diǎn),ABCE為菱形,∠BAD=120°,PA=AB,G,F(xiàn)分別是線(xiàn)段CE,PB上的動(dòng)點(diǎn),且滿(mǎn)足=
=λ∈(0,1).
(Ⅰ) 求證:FG∥平面PDC;
(Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,矩形中,
,
,
為
上的點(diǎn),且
,
.
(Ⅰ)求證:平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com