日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分14分)
          已知函數(shù)為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)
          的切線斜率為-1.
          (I)求的值及函數(shù)的極值;
          (II)證明:當(dāng)時(shí),
          (III)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng),恒有.

          (I),極值參考解析;(II)參考解析;(III)參考解析

          解析試題分析:(I)由函數(shù)為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)
          的切線斜率為-1.所以求函數(shù)的導(dǎo)數(shù),即可求出的值.再根據(jù)函數(shù)的導(dǎo)數(shù)地正負(fù),即可得函數(shù)的極值.
          (II)當(dāng)時(shí),恒成立,等價(jià)轉(zhuǎn)換為函數(shù)的最值問題.令,通過求函數(shù)的導(dǎo)數(shù)求出最值即可得到結(jié)論.
          (III)對(duì)任意給定的正數(shù),總存在,使得當(dāng),恒有.由(II)得到函數(shù)的單調(diào)性當(dāng)時(shí),即可找到符合題意.當(dāng)時(shí).通過等價(jià)轉(zhuǎn)化,等價(jià)于不等式恒成立問題,再對(duì)通過估算得到的值.即可得到結(jié)論.
          試題解析:(I)由,得.又,得.所以.令,得.當(dāng)時(shí), 單調(diào)遞減;當(dāng)時(shí), 單調(diào)遞增.所以當(dāng)時(shí), 取得極小值,且極小值為無極大值.
          (II)令,則.由(I)得,故在R上單調(diào)遞增,又,因此,當(dāng)時(shí), ,即.
          (III)①若,則.又由(II)知,當(dāng)時(shí), .所以當(dāng)時(shí), .取,當(dāng)時(shí),恒有.
          ②若,令,要使不等式成立,只要成立.而要使成立,則只要,只要成立.令,則.所以當(dāng)時(shí), 內(nèi)單調(diào)遞增.取,所以內(nèi)單調(diào)遞增.又.易知.所以.即存在,當(dāng)時(shí),恒有.
          綜上,對(duì)任意給定的正數(shù)c,總存在,當(dāng)時(shí),恒有.
          考點(diǎn):1.函數(shù)的極值.2.構(gòu)建新函數(shù)證

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)處取得極值,求函數(shù)以及的極大值和極小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (1)求的單調(diào)區(qū)間和極值;
          (2)若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分14分)
          已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.
          (1)求的值及函數(shù)的極值;
          (2)證明:當(dāng)時(shí),
          (3)證明:對(duì)任意給定的正數(shù),總存在,使得當(dāng)時(shí),恒有

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),.
          證明:(1)存在唯一,使;
          (2)存在唯一,使,且對(duì)(1)中的.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          為圓周率,為自然對(duì)數(shù)的底數(shù).
          (1)求函數(shù)的單調(diào)區(qū)間;
          (2)求,,,這6個(gè)數(shù)中的最大數(shù)與最小數(shù);
          (3)將,,,,這6個(gè)數(shù)按從小到大的順序排列,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
          (1)求a,b的值;
          (2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          用總長為14.8米的鋼條制成一個(gè)長方體容器的框架,如果所制的容器的底面的長比寬多0.5米,那么高為多少時(shí)容器的容器最大?并求出它的最大容積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)求在區(qū)間上的最大值;
          (2)若過點(diǎn)存在3條直線與曲線相切,求t的取值范圍;
          (3)問過點(diǎn)分別存在幾條直線與曲線相切?(只需寫出結(jié)論)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案