日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在直角梯形ABCD中,∠B=90°,DC∥AB,CD=AB,G為線段AB的中點,將△ADG沿GD折起,使平面ADG⊥平面BCDG,得到幾何體A-BCDG,
          (1)若E,F(xiàn)分別為線段AC,AD的中點,求證:EF∥平面ABG;
          (2)求證:AG⊥平面BCDG。
          證明:(1)依題意,折疊前后CD、BG的位置關(guān)系不改變,
          ∴CD∥BG,
          ∵E、F分別為線段AC、AD的中點,
          ∴在△ACD中,EF∥CD,∴EF∥BG,
          又EF平面ABG,BG平面ABG,
          ∴EF∥平面ABG。
          (2)將△ADG沿GD折起后,AG、GD的位置關(guān)系不改變,
          ∴AG⊥GD,
          又平面ADG⊥平面BCDG,平面ADG∩平面BCDG=GD,AG平面AGD,
          ∴AG⊥平面BCDG。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在直角梯形ABCD中,|AD|=3,|AB|=4,|BC|=
          3
          ,曲線段DE上任一點到A、B兩點的距離之和都相等.
          (1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線段DE的方程;
          (2)過C能否作一條直線與曲線段DE相交,且所得弦以C為中點,如果能,求該弦所在的直線的方程;若不能,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
          12
          AP=2,D是AP的中點,E,F(xiàn),G分別為PC,PD,CB的中點,將△PCD沿CD折起,使得PD⊥平面ABCD.
          (1)求證:AP∥平面EFG;
          (2)求二面角G-EF-D的大。
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在直角梯形OABC中,∠COA=∠OAB=
          π2
          ,OA=OS=AB=1,OC=2,點M是棱SB的中點,N是OC上的點,且ON:NC=1:3.
          (1)求異面直線MN與BC所成的角;
          (2)求MN與面SAB所成的角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在直角梯形ABCP中,AP∥BC,AB⊥AP,AB=BC=3,AP=7,CD⊥AP,現(xiàn)將△PCD沿折線CD折成直二面角P-CD-A,設(shè)E,F(xiàn)分別是PD,BC的中點.
          (Ⅰ)求證:EF∥平面PAB;
          (Ⅱ)求直線BE與平面PAB所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•藍山縣模擬)如圖所示,在直角梯形ABCD中,∠A=90°,∠C=45°,AB=2,AD=1,E是AB中點,F(xiàn)是DC上的點,且EF∥AD,現(xiàn)以EF為折痕將四邊形AEFD向上折起,使平面AEFD垂直平面EBCF,連AC,DC,BA,BD,BF,

          (1)求證:CB⊥平面DFB;
          (2)求二面角B-AC-D的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案