日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量a=(cosα ,sinα),b=(cosβ,sinβ),且ab之間滿足關(guān)系:|ka+b|=|a-kb|,其中k>0。
          (1)求將ab的數(shù)量積用k表示的解析式f(k);
          (2)a能否和b垂直?a能否和b平行?若不能,則說(shuō)明理由;若能,則求出對(duì)應(yīng)的k值;
          (3)求ab夾角的最大值。
          解:(1)∵ |ka+b|=|a-kb|,
          兩邊平方,得|ka+b|2=3|a-kb|2,
          ∴k2a2+2ka·b+b2=3(a2-2ka·b+k2b2),
          a=(cosα ,sinα),b=(cosβ,sinβ), 
          a2=1,b2=1,
          ∴f(k)=。
          (2)∵k2+1≠0, 
          a·b≠0,故ab不垂直,
          a//b,則|a·b|=|a||b|,即=1,   
          又k>0,
          ∴k=2±。
          (3)設(shè)ab的夾角為θ,
          a·b=|a||b|cosθ,
          ∴cosθ=,
          由k>0, k2+1≥2k,得,
          即cosθ≥
          ab夾角的最大值為。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(-cosα,1+sinα)
          ,
          b
          =(2sin2
          α
          2
          ,sinα)

          (Ⅰ)若|
          a
          +
          b
          |=
          3
          ,求sin2α的值;
          (Ⅱ)設(shè)
          c
          =(cosα,2)
          ,求(
          a
          +
          c
          )•
          b
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(cosωx-sinωx,sinωx)
          ,
          b
          =(-cosωx-sinωx,2
          3
          cosωx)
          ,其中ω>0,且函數(shù)f(x)=
          a
          b
          (λ為常數(shù))的最小正周期為π.
          (Ⅰ)求函數(shù)y=f(x)的圖象的對(duì)稱軸;
          (Ⅱ)若函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)(
          π
          4
          ,0)
          ,求函數(shù)y=f(x)在區(qū)間[0,
          12
          ]
          上的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(cos
          θ
          2
          ,sin
          θ
          2
          )
          ,
          b
          =(2,1)
          ,且
          a
          b

          (1)求tanθ的值;
          (2 )求
          cos2θ
          2
          cos(
          π
          4
          +θ)•sinθ
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(cos(ωx-
          π
          6
          ),  sin(ωx-
          π
          4
          )),  
          b
          =(sin(
          2
          3
          π-ωx), sin(ωx+
          π
          4
          ))
          (其中ω>0).若函數(shù)f(x)=2
          a
          b
          -1
          的圖象相鄰對(duì)稱軸間距離為
          π
          2

          (Ⅰ)求ω的值;
          (Ⅱ)求f(x)在[-
          π
          12
          ,  
          π
          2
          ]
          上的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量
          a
          =(cosθ,sinθ),
          b=
          (cos2θ-1,sin2θ),
          c
          =(cos2θ,sin2θ-
          3
          )
          .其中θ≠kπ,k∈Z.
          (1)求證:
          a
          b
          ;
          (2)設(shè)f(θ)=
          a
          c
          ,且θ∈(0,π),求f(θ)
          的值域.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案