日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          (Ⅰ)求函數(shù)f(x)在區(qū)間[1,e]上的最大值、最小值;
          (Ⅱ)求證:在區(qū)間(1,+∞)上函數(shù)f(x)的圖象在函數(shù)g(x)=圖象的下方;
          (Ⅲ)請你構(gòu)造函數(shù)h(x),使函數(shù)F(x)=f(x)+h(x)在定義域(0,+∞)上,存在兩個極值點(diǎn),并證明你的結(jié)論.
          【答案】分析:(1)對函數(shù)f(x)進(jìn)行求導(dǎo),然后根據(jù)導(dǎo)函數(shù)的正負(fù)判斷原函數(shù)的單調(diào)性,進(jìn)而可求最值.
          (2)先求出函數(shù)G(x)的解析式,然后求導(dǎo)進(jìn)而判斷函數(shù)的單調(diào)性,最后求出函數(shù)在(1,+∞)上的最小值大于0進(jìn)而可得證.
          (3)假設(shè)h(x)=-x,然后表示出函數(shù)F(x)的解析式后進(jìn)行求導(dǎo)運(yùn)算,令導(dǎo)函數(shù)等于0求出x的值,最后再用函數(shù)的單調(diào)性可證明有兩個極值點(diǎn).
          解答:解:(Ⅰ)
          ∵x>0,∴f′(x)>0,
          ∴f(x)在(0,+∞)上是單調(diào)遞增函數(shù),
          ∴f(x)在區(qū)間[1,e]上的最大值為f(e)=,
          最小值為f(1)=
          (Ⅱ)證明:設(shè)G(x)=g(x)-f(x),
          則G(x)=,
          ==,
          當(dāng)x∈(1,+∞)時(shí),顯然有G′(x)>0,
          ∴G(x)在區(qū)間(1,+∞)上是單調(diào)增函數(shù),
          ∴G(x)>G(1)=>0在(1,+∞)上恒成立,
          即g(x)>f(x)在(1,+∞)上恒成立,
          ∴在區(qū)間(1,+∞)上函數(shù)f(x)的圖象在函數(shù)g(x)=圖象的下方.
          (Ⅲ)令h(x)=-x,則F(x)=-x(x>0),

          令F′(x)=0,得x=,或x=2,令F′(x)>0得,
          0<x<,或x>2,令F′(x)<0得,<x<2
          ∴當(dāng)h(x)=-x時(shí),函數(shù)F(x)=f(x)+h(x)在定義域(0,+∞)上,
          存在兩個極值點(diǎn)x1=,x2=2.
          點(diǎn)評:本題主要考查函數(shù)的零點(diǎn)、求導(dǎo)運(yùn)算、根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)性.導(dǎo)數(shù)時(shí)高等數(shù)學(xué)下放到高中的內(nèi)容,是高考的熱點(diǎn)每年必考,要給予重視.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
          (1)求函數(shù)f(x)的最小正周期;
          (2)若函數(shù)y=f(2x+
          π
          4
          )
          的圖象關(guān)于直線x=
          π
          6
          對稱,求φ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
          (1)求x<0,時(shí)f(x)的表達(dá)式;
          (2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=aInx-ax,(a∈R)
          (1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
          1
          x

          (2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
          m
          2
          ]
          ,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
          1
          f(n)
          }
          的前n項(xiàng)和為Sn,則S2010的值為( 。
          A、
          2011
          2012
          B、
          2010
          2011
          C、
          2009
          2010
          D、
          2008
          2009

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
           

          查看答案和解析>>

          同步練習(xí)冊答案