日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 13、已知函數(shù)f(x)=k•4x-k•2x+1-4(k+5)在區(qū)間[0,2]上存在零點,則實數(shù)k的取值范圍是
          (-∞,-4]∪[5,+∞)
          分析:要使函數(shù)f(x)=k•4x-k•2x+1-4(k+5)在區(qū)間[0,2]上存在零點,換元令t=2x,則t∈[1,4],即f(t)=k•t2-2k•t-4(k+5)=k(t-1)2-5(k+4)在[1,4]上有零點,根據(jù)零點判定定理即可求得結(jié)論.
          解答:解:令t=2x,則t∈[1,4],
          ∴f(t)=k•t2-2k•t-4(k+5)=k(t-1)2-5(k+4)在[1,4]上有零點,
          ∴f(1)f(4)≤0即可,即-5(k+4)(4k-20)≤0,
          解得k≥5或k≤-4,
          故答案為:(-∞,-4]∪[5,+∞).
          點評:此題是中檔題.考查函數(shù)的零點與函數(shù)圖象的交點之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的能力,同時考查了學(xué)生靈活應(yīng)用知識分析解決問題的能力和計算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
          (Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時,將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
          (Ⅱ)當(dāng)k=4時,若對?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),試求實數(shù)b的取值范圍..

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          k+1x
          (k<0),求使得f(x+k)>1成立的x的集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=k•a-x(k,a為常數(shù),a>0且a≠1)的圖象過點A(0,1),B(3,8).
          (1)求實數(shù)k,a的值;
          (2)若函數(shù)g(x)=
          f(x)-1f(x)+1
          ,試判斷函數(shù)g(x)的奇偶性,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•蕪湖二模)給出以下五個命題:
          ①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
          ②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過點P(
          π
          3
          ,1),則函數(shù)圖象上過點P的切線斜率等于-
          3

          ③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
          ④函數(shù)f(x)=(
          1
          2
          )x-x
          1
          3
          在區(qū)間(0,1)上存在零點.
          ⑤已知向量
          a
          =(1,-2)
          與向量
          b
          =(1,m)
          的夾角為銳角,那么實數(shù)m的取值范圍是(-∞,
          1
          2

          其中正確命題的序號是
          ②③④
          ②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
          (Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時,試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
          (Ⅱ)當(dāng)k=4時,若對任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),試求實數(shù)b的取值范圍..

          查看答案和解析>>

          同步練習(xí)冊答案