日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (I)當(dāng)0<a<1且,f′(1)=0時(shí),求f(x)的單調(diào)區(qū)間;
          (II)已知且對|x|≥2的實(shí)數(shù)x都有f'(x)≥0.若函數(shù)y=f′(x)有零點(diǎn),求函數(shù)y=f(x)與函數(shù)y=f′(x)的圖象在x∈(-3,2)內(nèi)的交點(diǎn)坐標(biāo).
          【答案】分析:(Ⅰ)由f(x)=(a-3b+9)ln(x+3)+x2+(b-3)x可求得f′(x)=(x>-3),由f′(x)>0可求其遞增區(qū)間,由f′(x)<0可求其遞減區(qū)間;
          (Ⅱ)由(Ⅰ)及f′(3)≤⇒a≤-3b-8,|x|≥2且x>-3,有f′(x)≥0,從而可判斷y=f′(x)的零點(diǎn)在[-2,2]內(nèi),設(shè)g(x)=x2+bx+a,由
          可求得b=-4,a=4,于是得f(x)=25ln(x+3)+x2-7x,構(gòu)造函數(shù)φ(x)=f(x)-f′(x),利用導(dǎo)數(shù)法可求得φ(x)與x軸有唯一交點(diǎn),繼而求得a的值.
          解答:解:(Ⅰ)函數(shù)的定義域?yàn)椋?3,+∞),…1′
          f′(x)=(x>-3),由f′(1)=0⇒b=-a-1,
          故f′(x)=…3′
          ∵0<a<1,
          ∴由f′(x)>0得-3<x<a或x>1,
          ∴f(x)的單調(diào)遞增區(qū)間為(-3,a),(1,+∞),
          同理由f′(x)<0得f(x)的單調(diào)遞減區(qū)間為(a,1),…5′
          (Ⅱ)由(Ⅰ)及f′(3)≤⇒a≤-3b-8①
          又由|x|≥2且x>-3,有f′(x)≥0,
          ∴y=f′(x)的零點(diǎn)在[-2,2]內(nèi),設(shè)g(x)=x2+bx+a,
          ,結(jié)合①解得b=-4,a=4,
          ∴f(x)=25ln(x+3)+x2-7x…9′
          又設(shè)φ(x)=f(x)-f′(x),
          ∵φ′(x)=+-1,由-3<x<2得0<(x+3)2<25,
          故φ′(x)>0,φ(x)在(-3,2)上單調(diào)遞增,又φ(-2)=0,故φ(x)與x軸有唯一交點(diǎn),
          ∴函數(shù)y=f(x)與函數(shù)y=f′(x)的圖象在x∈(-3,2)內(nèi)的交點(diǎn)坐標(biāo)為(-2,16)…12′
          點(diǎn)評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用f(x)的導(dǎo)數(shù)法分析得到,y=f′(x)的零點(diǎn)在[-2,2]內(nèi)是關(guān)鍵,突出構(gòu)造函數(shù)與函數(shù)與方程的思想的考查,屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2011-2012年學(xué)廣東省梅州市東山中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知函數(shù)
          (I)當(dāng)a=1時(shí),求函數(shù)f (x)的單調(diào)遞增區(qū)間;
          (Ⅱ)當(dāng)a<0且x∈[0,π]時(shí),函數(shù)f (x)的值域是[3,4],求a+b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市西城區(qū)高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知函數(shù)
          (I)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處切線的斜率;
          (II)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)數(shù)學(xué)公式
          (I)當(dāng)0<a<1且,f′(1)=0時(shí),求f(x)的單調(diào)區(qū)間;
          (II)已知數(shù)學(xué)公式且對|x|≥2的實(shí)數(shù)x都有f'(x)≥0.若函數(shù)y=f′(x)有零點(diǎn),求函數(shù)y=f(x)與函數(shù)y=f′(x)的圖象在x∈(-3,2)內(nèi)的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省銅仁地區(qū)銅仁市衡民中學(xué)高三(上)暑假補(bǔ)課摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知函數(shù)
          (I)當(dāng)0<a<1且,f′(1)=0時(shí),求f(x)的單調(diào)區(qū)間;
          (II)已知且對|x|≥2的實(shí)數(shù)x都有f'(x)≥0.若函數(shù)y=f′(x)有零點(diǎn),求函數(shù)y=f(x)與函數(shù)y=f′(x)的圖象在x∈(-3,2)內(nèi)的交點(diǎn)坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案