【題目】已知是奇函數(shù)(e為自然對數(shù)的底數(shù)).
(1)求實數(shù)a的值;
(2)求函數(shù)在
上的值域;
(3)令,求不等式
的解集.
【答案】(1),(2)當(dāng)
時,值域為
;當(dāng)
時,值域為
,(3)
【解析】
(1)利用奇函數(shù)滿足求解即可.
(2) 設(shè),再分類討論參數(shù)求解二次復(fù)合函數(shù)的值域即可.
(3)判斷的單調(diào)性,再利用
的單調(diào)性與奇偶性求解不等式即可.
(1)的定義域為R,因為
為奇函數(shù),
所以,故
,即
.由檢驗知滿足題目要求.
(2)設(shè),所以
,
設(shè),
①當(dāng)時,
,所以值域為
;
②當(dāng)時,
,所以值域為
.
(3)的定義域為R,因為
為奇函數(shù),
所以,
故為奇函數(shù).
下面判斷的單調(diào)性
設(shè),則
,
因為,故
,
所以,故
在R上單調(diào)遞增,
所以由,得
,
又為奇函數(shù),即
,所以
.
,解得
或
,
故或
,
故原不等式的解集為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校為了解學(xué)生喜歡通用技術(shù)課程“機(jī)器人制作”是否與學(xué)生性別有關(guān),采用簡單隨機(jī)抽樣的辦法在我校高一年級抽出一個有60人的班級進(jìn)行問卷調(diào)查,得到如下的列聯(lián)表:
喜歡 | 不喜歡 | 合計 | |
男生 | 18 | ||
女生 | 6 | ||
合計 | 60 |
已知從該班隨機(jī)抽取1人為喜歡的概率是.
(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按90%的可靠性要求,能否認(rèn)為“喜歡與否和學(xué)生性別有關(guān)”?請說明理由.
參考臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了落實國務(wù)院“提速降費”的要求,某市移動公司欲下調(diào)移動用戶消費資費.已知該公司共有移動用戶10萬人,人均月消費50元.經(jīng)測算,若人均月消費下降x%,則用戶人數(shù)會增加萬人.
(1)若要保證該公司月總收入不減少,試求x的取值范圍;
(2)為了布局“5G網(wǎng)絡(luò)”,該公司擬定投入資金進(jìn)行5G網(wǎng)絡(luò)基站建設(shè),投入資金方式為每位用戶月消費中固定劃出2元進(jìn)入基站建設(shè)資金,若使該公司總盈利最大,試求x的值.
(總盈利資金=總收入資金-總投入資金)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)寫出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)恰有3個不同零點,求實數(shù)
的取值范圍;
(3)若對所有
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面
為菱形,
,側(cè)面
為等腰直角三角形,
,點
為棱
的中點.
(1)求證:面面
;
(2)若,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,水平的廣場上有一盞路燈掛在高的電線桿頂上,記電線桿的底部為點
.把路燈看作一個點光源,身高
的女孩站在離點
的點
處,回答下面的問題.
(1)若女孩以為半徑繞著電線桿走一個圓圈,人影掃過的是什么圖形,求這個圖形的面積;
(2)若女孩向點前行
到達(dá)點
,然后從點
出發(fā)沿著以
為對角線的正方形走一圈,畫出女孩走一圈時頭頂影子的軌跡,說明軌跡的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
經(jīng)過點
,離心率為
.
(1)求橢圓的方程;
(2)過點的直線
交橢圓于
,
兩點,
為橢圓
的左焦點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某機(jī)械廠要將長,寬
的長方形鐵皮
進(jìn)行裁剪.已知點
為
的中點,點
在邊
上,裁剪時先將四邊形
沿直線
翻折到
處(點
,
分別落在直線
下方點
,
處,
交邊
于點
,再沿直線
裁剪.
(1)當(dāng)時,試判斷四邊形
的形狀,并求其面積;
(2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com