日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF=,則下列結論中錯誤的是

          AACBE

          BEF平面ABCD

          C三棱錐A﹣BEF的體積為定值

          D異面直線AE,BF所成的角為定值

          【答案】D

          【解析】

          試題分析:AC平面,又BE平面,

          ACBE故A正確

          EF垂直于直線,,

          平面AEF故B正確

          C中由于點B到直線的距離不變,故BEF的面積為定值

          又點A到平面BEF的距離為,故VA-BEF為定值C正確

          當點E在處,F(xiàn)為的中點時,異面直線AE,BF所成的角是FBC1,

          當E在上底面的中心時,F(xiàn)在C1的位置,

          異面直線AE,BF所成的角是EAA1

          顯然兩個角不相等,D不正確

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】M(3,2)N(6,2)兩點的直線方程為 (  )

          A. x=2 B. y=2

          C. x=3 D. x=6

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,直三棱柱的底面為正三角形,分別是的中點

          1證明:平面平面

          2中點,,設三棱錐的體積為,三棱錐與三棱錐的公共部分的體積為,求的值

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),其中是自然數(shù)的底數(shù),

          (1)當,解不等式;

          (2)若,試判斷上是否有最大或最小值說明你的理由

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),

          )若,求的單調區(qū)間;()若有最大值3,求的值;()若的值域是,求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直三棱柱ABC﹣A1B1C1中,BC=CC1,AB⊥BC點M,N分別是CC1,B1C的中點,G是棱AB上的動點

          1求證:B1C⊥平面BNG;

          2若CG∥平面AB1M,試確定G點的位置,并給出證明

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi單位:千元與月儲蓄yi單位:千元的數(shù)據(jù)資料,算得=80, =20, =184, =720

          求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;

          判斷變量x與y之間是正相關還是負相關;

          若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線的焦點為,直線軸交點為,與的交點為,且

          的方程;

          的直線相交于兩點,若的垂直平分線相交于兩點,且四點在同一圓上,求的方程

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】10個相同的小球分成三堆,要求每一堆至少有1個,至多5個,則不同的方法共有

          A. 6 B. 5 C. 4 D. 3

          查看答案和解析>>

          同步練習冊答案