設(shè)函數(shù)f(x)=lg(x2+ax﹣a﹣1),給出下述命題:
①函數(shù)f(x)的值域為R;
②函數(shù)f(x)有最小值;
③當a=0時,函數(shù)f(x)為偶函數(shù);
④若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍a≥﹣4.
正確的命題是( 。
| A. | ①③ | B. | ②③ | C. | ②④ | D. | ③④ |
考點:
對數(shù)函數(shù)的單調(diào)性與特殊點.
專題:
閱讀型.
分析:
由已知中函數(shù)f(x)=lg(x2+ax﹣a﹣1),我們易判斷出其真數(shù)部分的范圍,結(jié)合對數(shù)函數(shù)的性質(zhì)可判斷①與②的真假,由偶函數(shù)的定義,可判斷③的正誤,再由復(fù)合函數(shù)單調(diào)性的判斷方法及函數(shù)的定義域,可判斷④的對錯.進而得到結(jié)論.
解答:
解:∵u=x2+ax﹣a﹣1的最小值為﹣(a2+4a+4)≤0
∴①函數(shù)f(x)的值域為R為真命題;
但函數(shù)f(x)無最小值,故②錯誤;
當a=0時,易得f(﹣x)=f(x),即③函數(shù)f(x)為偶函數(shù)正確;
若f(x)在區(qū)間[2,+∞)上單調(diào)遞增,
則
解得a>﹣3,故④錯誤;
故選A
點評:
本題考查的知識點是對數(shù)函數(shù)的單調(diào)性與特殊點、對數(shù)函數(shù)的定義和值域、偶函數(shù)及復(fù)合函數(shù)的單調(diào)性,是一道函數(shù)的綜合應(yīng)用題,其中④中易忽略真數(shù)部分必須大于0,而錯判為真命題.
科目:高中數(shù)學(xué) 來源: 題型:
|
A、(-∞,-1)∪(1,+∞) |
B、(-∞,-1)∪(0,+∞) |
C、(-1,0)∪(0,1) |
D、(-1,0)∪(0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
3 |
|
1 |
3 |
4 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com