【題目】如圖,已知圓:
,點(diǎn)
是圓
內(nèi)一個定點(diǎn),點(diǎn)
是圓上任意一點(diǎn),線段
的垂直平分線
和半徑
相交于點(diǎn)
.當(dāng)點(diǎn)
在圓上運(yùn)動時,點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)設(shè)過點(diǎn)的直線
與曲線
相交于
兩點(diǎn)(點(diǎn)
在
兩點(diǎn)之間).是否存在直線
使得
?若存在,求直線
的方程;若不存在,請說明理由.
【答案】(1)(2)存在,
或
.
【解析】
(1)結(jié)合垂直平分線的性質(zhì)和橢圓的定義,求出橢圓的方程.
(2)設(shè)出直線的方程,聯(lián)立直線
的方程和橢圓方程,寫出韋達(dá)定理,利用
,結(jié)合向量相等的坐標(biāo)表示,求得直線
的斜率,進(jìn)而求得直線
的方程.方法一和方法二的主要曲邊是直線
的方程的設(shè)法的不同.
(1)因為圓的方程為
,
所以,半徑
.
因為是線段
的垂直平分線,所以
.
所以.
因為,
所以點(diǎn)的軌跡是以
,
為焦點(diǎn),長軸長
的橢圓.
因為,
,
,
所以曲線的方程為
.
(2)存在直線使得
.
方法一:因為點(diǎn)在曲線
外,直線
與曲線
相交,
所以直線的斜率存在,設(shè)直線
的方程為
.
設(shè),
由 得
.
則, ①
, ②
由題意知,解得
.
因為,
所以,即
. ③
把③代入①得,
④
把④代入②得,得
,滿足
.
所以直線的方程為:
或
.
方法二:因為當(dāng)直線的斜率為0時,
,
,
,
此時.
因此設(shè)直線的方程為:
.
設(shè),
由 得
.
由題意知,解得
或
,
則, ①
, ②
因為,所以
. ③
把③代入①得,
④
把④代入②得,
,滿足
或
.
所以直線的方程為
或
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題,
;命題
關(guān)于
的方程
有兩個相異實數(shù)根.
(1)若為真命題,求實數(shù)
的取值范圍;
(2)若為真命題,
為假命題,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱的側(cè)面
是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個點(diǎn)。
(1)若圓柱的軸截面是正方形,當(dāng)點(diǎn)C是弧AB的中點(diǎn)時,求異面直線與AB的所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)當(dāng)點(diǎn)C是弧AB的中點(diǎn)時,求四棱錐體積與圓柱體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交大設(shè)計學(xué)院植物園準(zhǔn)備用一塊邊長為4百米的等邊ΔABC田地(如圖)建立芳香植物生長區(qū)、植物精油提煉處與植物精油體驗點(diǎn).田地內(nèi)擬建筆直小路MN、AP,其中M、N分別為AC、BC的中點(diǎn),點(diǎn)P在CN上.規(guī)劃在小路MN和AP的交點(diǎn)O(O與M、N不重合)處設(shè)立植物精油體驗點(diǎn),圖中陰影部分為植物精油提煉處,空白部分為芳香植物生長區(qū),A、N為出入口(小路寬度不計).為節(jié)約資金,小路MO段與OP段建便道,供芳香植物培育之用,費(fèi)用忽略不計,為車輛安全出入,小路AO段的建造費(fèi)用為每百米4萬元,小路ON段的建造費(fèi)用為每百米3萬元.
(1)若擬建的小路AO段長為百米,求小路ON段的建造費(fèi)用;
(2)設(shè)∠BAP=,求
的值,使得小路AO段與ON段的建造總費(fèi)用最小,并求岀最小建造總費(fèi)用(精確到元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實推進(jìn)陽光體育運(yùn)動,積極引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機(jī)抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:
分組 | ||||||
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為“鍛煉達(dá)人”.
(1)將頻率視為概率,估計我校7000名學(xué)生中“鍛煉達(dá)人”有多少?
(2)從這100名學(xué)生的“鍛煉達(dá)人”中按性別分層抽取5人參加某項體育活動.
①求男生和女生各抽取了多少人;
②若從這5人中隨機(jī)抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖有一景區(qū)的平面圖是一半圓形,其中直徑長為兩點(diǎn)在半圓弧上滿足
,設(shè)
,現(xiàn)要在景區(qū)內(nèi)鋪設(shè)一條觀光通道,由
和
組成.
(1)用表示觀光通道的長
,并求觀光通道
的最大值;
(2)現(xiàn)要在景區(qū)內(nèi)綠化,其中在中種植鮮花,在
中種植果樹,在扇形
內(nèi)種植草坪,已知單位面積內(nèi)種植鮮花和種植果樹的利潤均是種植草坪利潤的
倍,則當(dāng)
為何值時總利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)設(shè)為
.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個極值點(diǎn)
,
,試用
表示
;
(Ⅲ)在(Ⅱ)的條件下,若的極值點(diǎn)恰為
的零點(diǎn),試求
,
這兩個函數(shù)的所有極值之和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(m,n為常數(shù)),在
處的切線方程為
.
(Ⅰ)求的解析式并寫出定義域;
(Ⅱ)若,使得對
上恒有
成立,求實數(shù)
的取值范圍;
(Ⅲ)若有兩個不同的零點(diǎn)
,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com