日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為,為直線上的任意一點(diǎn).

          1為曲線上任意一點(diǎn),求兩點(diǎn)間的最小距離;

          2)過點(diǎn)作曲線的兩條切線,切點(diǎn)為,曲線的對(duì)稱中心為點(diǎn),求四邊形面積的最小值.

          【答案】1.(2

          【解析】

          1)將曲線的參數(shù)方程化為普通方程可得圓,直線的極坐標(biāo)方程化為直角坐標(biāo)方程,由直線與圓的位置關(guān)系可得兩點(diǎn)間的最小距離;

          2)△PACPBC為直角三角形,AC=BC=1,根據(jù)圖形的對(duì)稱性及勾股定理可知,四邊形的面積,可得PC最小時(shí)面積最小,由此能求出面積的最小值.

          1)由曲線的參數(shù)方程為(為參數(shù)),得

          曲線是以為圓心,以1為半徑的圓.

          ,化簡(jiǎn)得,

          ,

          為直線上的任意一點(diǎn),為圓上任意一點(diǎn),

          (其中為圓心),

          ,

          .

          2)由題意,PACPBC為直角三角形,AC=BC=1

          根據(jù)圖形的對(duì)稱性及勾股定理可知,

          四邊形的面積.

          由(1)知,,

          四邊形面積的最小值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:

          I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;

          II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某品牌電腦體驗(yàn)店預(yù)計(jì)全年購(gòu)入臺(tái)電腦,已知該品牌電腦的進(jìn)價(jià)為/臺(tái),為節(jié)約資金決定分批購(gòu)入,若每批都購(gòu)入為正整數(shù))臺(tái),且每批需付運(yùn)費(fèi)元,儲(chǔ)存購(gòu)入的電腦全年所付保管費(fèi)與每批購(gòu)入電腦的總價(jià)值(不含運(yùn)費(fèi))成正比(比例系數(shù)為),若每批購(gòu)入臺(tái),則全年需付運(yùn)費(fèi)和保管費(fèi).

          1)記全年所付運(yùn)費(fèi)和保管費(fèi)之和為元,求關(guān)于的函數(shù).

          2)若要使全年用于支付運(yùn)費(fèi)和保管費(fèi)的資金最少,則每批應(yīng)購(gòu)入電腦多少臺(tái)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對(duì)手機(jī)流量的需求越來越大.某通信公司為了更好地滿足消費(fèi)者對(duì)流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了人口規(guī)模相當(dāng)?shù)?/span>個(gè)城市采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià): (單位:元/月)和購(gòu)買總?cè)藬?shù)(單位:萬人)的關(guān)系如表:

          定價(jià)x(元/月)

          20

          30

          50

          60

          年輕人(40歲以下)

          10

          15

          7

          8

          中老年人(40歲以及40歲以上)

          20

          15

          3

          2

          購(gòu)買總?cè)藬?shù)y(萬人)

          30

          30

          10

          10

          (Ⅰ)根據(jù)表中的數(shù)據(jù),請(qǐng)用線性回歸模型擬合的關(guān)系,求出關(guān)于的回歸方程;并估計(jì)元/月的流量包將有多少人購(gòu)買?

          (Ⅱ)若把元/月以下(不包括元)的流量包稱為低價(jià)流量包,元以上(包括元)的流量包稱為高價(jià)流量包,試運(yùn)用獨(dú)立性檢驗(yàn)知識(shí),填寫下面列聯(lián),并通過計(jì)算說明是否能在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為購(gòu)買人的年齡大小與流量包價(jià)格高低有關(guān)?

          定價(jià)x(元/月)

          小于50元

          大于或等于50元

          總計(jì)

          年輕人(40歲以下)

          中老年人(40歲以及40歲以上)

          總計(jì)

          參考公式:其中

          其中

          參考數(shù)據(jù):

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】改編自中國(guó)神話故事的動(dòng)畫電影《哪吒之魔童降世》自726日首映,在不到一個(gè)月的時(shí)間,票房收入就超過了38億元,創(chuàng)造了中國(guó)動(dòng)畫電影的神話.小明和同學(xué)相約去電影院觀看《哪吒之魔童降世》,影院的三個(gè)放映廳分別在730,800830開始放映,小明和同學(xué)大約在740830之間到達(dá)影院,且他們到達(dá)影院的時(shí)間是隨機(jī)的,那么他們到達(dá)后等待的時(shí)間不超過10分鐘的概率是( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】點(diǎn)是拋物線內(nèi)一點(diǎn),是拋物線的焦點(diǎn),是拋物線上任意一點(diǎn),且已知的最小值為2.

          1)求拋物線的方程;

          2)拋物線上一點(diǎn)處的切線與斜率為常數(shù)的動(dòng)直線相交于,且直線與拋物線相交于、兩點(diǎn).問是否有常數(shù)使?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=,若關(guān)于的方程恰好有 4 個(gè)不相等的實(shí)數(shù)解,則實(shí)數(shù)的取值范圍為( )

          A. B. C. D. (0,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)(其中).

          (1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;

          (2)若恒成立,求的取值范圍;

          (3)設(shè),且函數(shù)有極大值點(diǎn),求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

          1)寫出直線的普通方程和曲線C的直角坐標(biāo)方程;

          2)已知定點(diǎn),直線與曲線C分別交于P、Q兩點(diǎn),求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案