日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)是定義在R上的奇函數(shù),對(duì)任意的x都有f(x+2)=f(x)成立,且當(dāng)x∈(0,1)時(shí)f(x)=
          2x4x+1

          (1)判斷f(x)在(0,1)上的單調(diào)性,并加以證明;
          (2)求f(x)在[-1,1]上的解析式;
          (3)當(dāng)關(guān)于x的方程f(x)-1=2λ在[-1,1]上有實(shí)數(shù)解時(shí),求實(shí)數(shù)λ的取值范圍,
          分析:(1)用定義法證明函數(shù)的單調(diào)性,作差,變形,判號(hào),得出結(jié)論四步,
          (2)利用奇函數(shù)的性質(zhì)求解,其步驟是先設(shè)x∈(-1,0),則-x∈(0,1),求出f(-x),再利用奇函數(shù)的性質(zhì),得到 f(x)=-f(-x)求出x∈(-1,0),上的表達(dá)式,再由所給的恒等式求出自變量為-1,0,1時(shí)的函數(shù)值為零,用分段函數(shù)寫(xiě)出解析式.
          (3)將λ表示為x的函數(shù),單調(diào)性求f(x)在[-1,1]上值域,利用一次函數(shù)的單調(diào)性求出λ的取值范圍.
          解答:解:(1)f(x)在(0,1)上是減函數(shù),證明如下
          當(dāng)x∈(0,1)時(shí),f(x)=
          2x
          4x+1

          設(shè)0<x1<x2<1,
          則f(x1)-f(x2)=
          2x 1
          4x1+1
          -
          2x2
          4x2+1
          =
          (2x2-2x1)(2x1+x2-1)  
          4x1+1)(4x2+1)  

          ∵0<x1<x2<1,∴2x2-2x1>0,2 x1+x2-1>0,
          ∴f(x1)-f(x2)>0,即f(x1)>f(x2),
          故f(x)在(0,1)上單調(diào)遞減
          (2)解:當(dāng)x∈(-1,0)時(shí),-x∈(0,1).
          ∵f(x)是奇函數(shù),∴f(x)=-f(-x)=-
          2x
          4x+1

          由f(0)=f(-0)=-f(0),且f(1)=-f(-1)=-f(-1+2)=-f(1),
          得f(0)=f(1)=f(-1)=0.∴在區(qū)間[-1,1]上,有f(x)=
          2x
          4x+1
               x∈(0,1)
          -
          2 x
          4 x+1
              x∈(-1,0)
          0                 x∈{-1,0,1}

          (3)解:f(x)-1=2λ在[-1,1]上有實(shí)數(shù)解,轉(zhuǎn)化為λ=
          1
          2
          f(x)-
          1
          2
          由函數(shù)的單調(diào)性求出函數(shù)在[-1,1]的值域
          即得,f(x)的值域?yàn)?span id="2ds8tft" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">(-
          1
          2
          ,-
          2
          5
          )∪(
          2
          5
          ,
          1
          2
          )∪{0}λ∈(-
          3
          4
          ,-
          7
          10
          )∪(-
          3
          10
          ,-
          1
          4
          )∪{-
          1
          2
          }
          點(diǎn)評(píng):本題考查復(fù)雜函數(shù)的單調(diào)性證明以及利用函數(shù)的奇偶性求對(duì)稱(chēng)區(qū)間上的解析式,思路簡(jiǎn)單,運(yùn)算變形較繁,是一道提高答題者耐心的好題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿(mǎn)足f(1-a)+f(2a-3)小于0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
          f(a)+f(b)
          a+b
          >0

          (1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
          (2)解不等式:f(
          1
          x-1
          )>0,x∈(0,+∞);
          (3)若f′(x)=-2x+1+
          1
          x
          =-
          2x2-x-1
          x
          對(duì)所有f'(x)=0,任意x=-
          1
          2
          恒成立,求實(shí)數(shù)x=1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
          12
          3)
          ,c=f(0.2-0.6),則a,b,c的大小關(guān)系
          a>b>c
          a>b>c

          查看答案和解析>>

          同步練習(xí)冊(cè)答案