日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于函數(shù)f(x),若f(x)=x,則稱x為f(x)的“不動點”;若f[f(x)]=x,則稱x為f(x)的“周期點”,函數(shù)f(x)的“不動點”和“周期點”的集合分別記為A和B即A={x|f(x)=x},B={x|f[f(x)=x]}.
          (1)求證:A⊆B
          (2)若f(x)=ax2-1(a∈R,x∈R),且A=B≠∅,求實數(shù)a的取值范圍.
          分析:(I)分A=∅和A≠∅的情況,然后根據(jù)所給“不動點”和“穩(wěn)定點”的定義來證明.
          (II)理解A=B時,它表示方程ax2-1=x與方程a(ax2-1)2-1=x有相同的實根,根據(jù)這個分析得出求出a的值.
          解答:證明:(1)?x∈A,即f(x)=x.
          則有f[f(x)]=f(x)=x,x∈B
          ∴A⊆B
          (2)∵f(x)=ax2-1
          ∴f[f(x)]=a(ax2-1)2-1
          若f[f(x)]=x,則a(ax2-1)2-1-x=0a(ax2-1)2-1-x=a(ax2-1)2-ax2+ax2-x-1=a[(ax2-1)2-x2]+ax2-x-1=a(ax2-x-1)(ax2+x-1)+ax2-x-1=(ax2-x-1)(a2x2+ax-a+1)
          ∴B={x|(ax2-x-1)(a2x2+ax-a+1)=0}A={x|ax2-x-1=0}
          當a=0時,A={-1},B={-1},A=B≠∅
          ∴a=0符合題意
          當a≠0時,當A=B≠∅時,方程ax2-x-1=0有實根;對方程a2x2+ax-a+1=0根的情況進行分類討論:
          ①若方程a2x2+ax-a+1=0有兩個不相等的實根,則
          1+4a>0
          a2-4a2(1-a)>0
          a≠0

          此時a>
          3
          4
          .此時兩個方程沒有公共解,集合B中有四個元素.不合題意,舍去.
          ②若方程a2x2+ax-a+1=0有兩個相等的實根,則
          1+4a≥0
          a2-4a2(1-a)=0
          a≠0

          解得a=
          3
          4
          .此時方程ax2-x-1=0的兩根分別為-
          2
          3
           ,  2
          ;a2x2+ax-a+1=0的實根為x1=x2=-
          2
          3
          .驗證得:A=B={-
          2
          3
           ,  2}

          ③若方程a2x2+ax-a+1=0無實根,此時A=B.則
          1+4a≥0
          a2-4a2(1-a)<0
          a≠0

          解得:-
          1
          4
          ≤a<
          3
          4
          且a≠0.
          從而所求a的取值范圍為{a|-
          1
          4
          ≤a≤
          3
          4
          }
          點評:本題考查對新概念的理解和運用的能力,同時考查了集合間的關(guān)系和方程根的相關(guān)知識,解題過程中體現(xiàn)了分類討論的數(shù)學(xué)思想,屬中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x),若存在區(qū)間M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”.給出下列4個函數(shù):
          ①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
          π2
          x
          ;④f(x)=ex.其中存在“穩(wěn)定區(qū)間”的函數(shù)有
           
          (填出所有滿足條件的函數(shù)序號)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x),若在其定義域內(nèi)存在兩個實數(shù)a,b(a<b),使當x∈[a,b]時,f(x)的值域也是[a,b],則稱函數(shù)f(x)為“科比函數(shù)”.若函數(shù)f(x)=k+
          x+2
          是“科比函數(shù)”,則實數(shù)k的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數(shù)
          f(x)=ax2+bx+1(a>0)有兩個相異的不動點x1,x2
          (1)若x1<1<x2,且f(x)的圖象關(guān)于直線x=m對稱,求證:
          12
          <m<1;
          (2)若|x1|<2且|x1-x2|=2,求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點”.函數(shù)f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
          (1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
          (2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0,則稱x0為函數(shù)f(x)的不動點.若函數(shù)f(x)=
          x2+a
          bx-c
          (b,c∈N*)有且僅有兩個不動點0和2,且f(-2)<-
          1
          2

          (1)試求函數(shù)f(x)的單調(diào)區(qū)間,
          (2)已知各項不為0的數(shù)列{an}滿足4Sn•f(
          1
          an
          )=1,其中Sn表示數(shù)列{an}的前n項和,求證:(1-
          1
          an
          )an+1
          1
          e
          <(1-
          1
          an
          )an

          (3)在(2)的前題條件下,設(shè)bn=-
          1
          an
          ,Tn表示數(shù)列{bn}的前n項和,求證:T2011-1<ln2011<T2010

          查看答案和解析>>

          同步練習(xí)冊答案