日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 有一邊長(zhǎng)為的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)為的小正方形,然后做成一個(gè)無(wú)蓋方盒。

          (1)試把方盒的容積表示成的函數(shù);

          (2)求多大時(shí),做成方盒的容積最大。

           

          【答案】

          (1)

          (2)當(dāng)時(shí),做成方盒的容積最大

          【解析】此題是一道應(yīng)用題,主要還是考查導(dǎo)數(shù)的定義及利用導(dǎo)數(shù)來(lái)求區(qū)間函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值、解不等式等基礎(chǔ)知識(shí),考查綜合分析和解決問(wèn)題的能力,解題的關(guān)鍵是求導(dǎo)要精確.

          求體積最大值的問(wèn)題,由題意解出v的表達(dá)式,對(duì)函數(shù)v進(jìn)行求導(dǎo),解出極值點(diǎn),然后根據(jù)極值點(diǎn)來(lái)確定函數(shù)v的單調(diào)區(qū)間,因極值點(diǎn)是關(guān)于a,t的表達(dá)式,此時(shí)就需要討論函數(shù)v的單調(diào)性,分別代入求出最大值,從而求解

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省佛山市高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          一邊長(zhǎng)為的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為的小正方形,然后做成一個(gè)無(wú)蓋方盒。

          (1)試把方盒的容積表示為的函數(shù);

          (2)多大時(shí),方盒的容積最大?

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省佛山市高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

          一邊長(zhǎng)為的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為的小正方形,然后做成一個(gè)無(wú)蓋方盒。

          (1)試把方盒的容積表示為的函數(shù);(2)多大時(shí),方盒的容積最大?

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省增城市高三畢業(yè)班調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

          (本題滿(mǎn)分13分)一邊長(zhǎng)為的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為的小正方形,然后做成一個(gè)無(wú)蓋方盒.

          (1)將方盒的容積表示成的函數(shù);

          (2)當(dāng)是多少時(shí),方盒的容積最大?最大容積是多少?

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省深圳市高三上學(xué)期第一次月考文科數(shù)學(xué)卷 題型:填空題

          如下圖所示,墻上掛有一邊長(zhǎng)為的正方形木板,它的四個(gè)角的空白部分都是以正方形的頂點(diǎn)為圓心,半徑為的圓弧,某人向此板投鏢,假設(shè)每次都能擊中木板,且擊中木板上每個(gè)點(diǎn)的可能性都一樣,則他擊中陰影部分的概率是___________

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案