日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)=x+
          1
          x
          的圖象為c1,c1關(guān)于點A(2,1)對稱的圖象為c2,c2對應的函數(shù)為g(x)
          (1)求g(x)的解析表達式;
          (2)解不等式logag(x)<loga
          9
          2
          (a>0且≠1)
          分析:(1)設(shè)函數(shù)g(x)圖象任一點P(x,y),利用中點坐標公式求關(guān)于點A對稱的點P'坐標,再把此點的坐標代入函數(shù)f(x)的解析式,化簡得到g(x)的解析式;
          (2)由g(x)>0求出x的范圍,即對應函數(shù)的定義域,再分a>1和0<a<1兩種情況求解,分別利用對數(shù)函數(shù)的單調(diào)性進行轉(zhuǎn)化,解分式不等式的解集時利用通分進行化簡,利用求出的x的范圍求解不等式的解集,并與定義域求交集.
          解答:解:(1)設(shè)函數(shù)g(x)圖象c2上任一點P(x,y),則關(guān)于點A(2,1)對稱的點P'坐標為(x',y'),
          由中點坐標公式得,
          x+x′
          2
          =2
          y+y′
          2
          =1
          ,解得x'=4-x,y'=2-y,即P'(4-x,2-y),
          ∵點P'在函數(shù)f(x)=x+
          1
          x
          的圖象c1上,∴2-y=4-x+
          1
          4-x
          ,則y=x-2+
          1
          x-4

          ∴g(x)=x-2+
          1
          x-4

          (2)由g(x)>0得,x-2+
          1
          x-4
          >0,即
          x2-6x+9
          x-4
          >0,
          ∴(x2-6x+9)(x-4)>0,解得x>4,則y=logag(x)的定義域是(4,+∞),
          下面分兩種情況求解:
          當a>1時,函數(shù)y=logax在定義域上是增函數(shù),
          ∴原不等式變?yōu)?span id="2zvaxzd" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">x-2+
          1
          x-4
          9
          2
          ,即
          x2-6x+9
          x-4
          -
          9
          2
          <0,
          2x2-21x+54
          2(x-4)
          <0,
          ∵x>4,∴2x2-21x+54<0,解得,
          9
          2
          <x<6;
          即不等式的解集是{x|
          9
          2
          <x<6}
          ,
          當0<a<1時,函數(shù)y=logax在定義域上是減函數(shù),
          ∴原不等式變?yōu)?span id="gipt7hl" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">x-2+
          1
          x-4
          9
          2
          ,即
          x2-6x+9
          x-4
          -
          9
          2
          >0,
          2x2-21x+54
          2(x-4)
          >0,
          ∵x>4,∴2x2-21x+54>0,解得,x>6或x<
          9
          2
          ,
          ∵x>4,∴4<x<
          9
          2
          或x>6,即不等式的解集是{x|4<x<
          9
          2
          或x>6}
          ,
          綜上,當a>1時不等式的解集是{x|
          9
          2
          <x<6}
          ,
          當0<a<1時不等式的解集為{x|4<x<
          9
          2
          或x>6}
          點評:本題是一道難度和計算量較大的綜合題,考查了利用對稱和代入法求函數(shù)的解析式,利用底數(shù)進行分類討論和對數(shù)函數(shù)的單調(diào)性,對有關(guān)對數(shù)不等式進行轉(zhuǎn)化;注意求解先求出函數(shù)的定義域以及分式不等式的等價變形,這是易錯的地方.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          對于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
          (1)若f(x)=
          x
          2
          -
          1
          x
          ,g(x)=lnx
          ,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
          (2)記f(x)=x,g(x)=lnx,證明f(x)在(
          1
          m
          ,m)(m>1)
          上不能被g(x)替代;
          (3)設(shè)f(x)=alnx-ax,g(x)=-
          1
          2
          x2+x
          ,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•順義區(qū)二模)對于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
          函數(shù)h(x)=
          f(x)•g(x),當x∈M且x∈N
          f(x),當x∈M且x∉N
          g(x),當x∉M且x∈N

          (1)若函數(shù)f(x)=
          1
          x+1
          ,g(x)=x2+2x+2,x∈R
          ,求函數(shù)h(x)的取值集合;
          (2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點P1為直線l:2x-y+2=0與x軸的交點,點Pn的坐標為(an,bn).求證:
          1
          |P1P2|2
          +
          1
          |P1P3|2
          +…+
          1
          |P1Pn|2
          2
          5
          ;
          (3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請問,是否存在一個定義域為R的函數(shù)y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          對于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
          (1)若f(x)=
          x
          2
          -
          1
          x
          ,g(x)=lnx
          ,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
          (2)記f(x)=x,g(x)=lnx,證明f(x)在(
          1
          m
          ,m)(m>1)
          上不能被g(x)替代;
          (3)設(shè)f(x)=alnx-ax,g(x)=-
          1
          2
          x2+x
          ,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數(shù)a的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          設(shè)f(x)=x+
          1
          x
          的圖象為c1,c1關(guān)于點A(2,1)對稱的圖象為c2,c2對應的函數(shù)為g(x)
          (1)求g(x)的解析表達式;
          (2)解不等式logag(x)<loga
          9
          2
          (a>0且≠1)

          查看答案和解析>>

          同步練習冊答案