日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為,左焦點為

          (Ⅰ)求橢圓的方程;

          (Ⅱ)若直線與曲線交于不同的、兩點,且線段的中點在圓 上,求的值.

           

          【答案】

          (Ⅰ);(Ⅱ).

          【解析】

          試題分析:(Ⅰ)利用離心率和直線與焦點坐標得到兩個等量關系,確定橢圓方程;(Ⅱ)利用直線與圓聯(lián)立,借助韋達定理和中點坐標M在圓上建立等量關系.

          試題解析:(Ⅰ)由題意得,                                2分

          解得                                      4分

          所以橢圓C的方程為:                               6分

          (Ⅱ)設點、的坐標分別為,線段的中點為,

          ,消去y得                 8分

          ,∴                           9分

          ,                           10分

          ∵點 在圓上,∴,即  13分

          考點:1.橢圓方程;2.直線與圓的位置關系.

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知橢圓E的離心率為e,兩焦點為F1,F(xiàn)2,拋物線C以F1為頂點,F(xiàn)2為焦點,P為兩曲線的一個公共點,若
          |PF1|
          |PF2|
          =e,則e的值為( 。
          A、
          3
          3
          B、
          3
          2
          C、
          2
          2
          D、
          6
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標系xOy中,橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設線段FM交橢圓C于點P,已知橢圓C的離心率為
          2
          3
          ,點M的橫坐標為
          9
          2

          (1)求橢圓C的標準方程;
          (2)設直線PA的斜率為k1,直線MA的斜率為k2,求k1•k2的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓E的離心率為e,兩焦點為F1、F2,拋物線C以F1為頂點,F(xiàn)2為焦點,P為兩曲線的一個交點,若
          |PF1|
          |PF2|
          =e,則e的值為
          3
          3
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知橢圓C的離心率為e=
          6
          3
          ,一條準線方程為x=
          3
          2
          2

          (1)求橢圓C的標準方程;
          (2)設動點P滿足:
          OP
          =
          OM
          +
          ON
          ,其中M,N是橢圓上的點,直線OM與ON的斜率之積為-
          1
          3
          ,問:是否存在兩個定點A,B,使得|PA|+|PB|為定值?若存在,求A,B的坐標;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (A題) (奧賽班做)已知橢圓E的離心率為e,左右焦點分別為F1、F2,拋物線C以F1頂點,F(xiàn)2為焦點,P為兩曲線的一個交點,
          |PF1|
          |PF2|
          =e
          ,則e的值為
          3
          3
          3
          3

          查看答案和解析>>

          同步練習冊答案