日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=
          (Ⅰ)若f(x)在x=1,x=處取得極值,
          (i)求a、b的值;
          (ii)在存在x,使得不等式f(xo)-c≤0成立,求c最小值
          (Ⅱ)當(dāng)b=a時(shí),若f(x)在(0,+∞)上是單調(diào)函數(shù),求a的取值范圍.
          (參考數(shù)據(jù)e2≈7.389,e3≈20.08)
          【答案】分析:(I)(i)先對(duì)函數(shù)進(jìn)行求導(dǎo),根據(jù)函數(shù)在取得極值,則,代入可求a,b的值.
          (ii)轉(zhuǎn)化為c≥f(x)min,從而求函數(shù)f(x)在區(qū)間上的最小值,從而求c的值
          (II)當(dāng)a=b時(shí),f(x)=
          ①a=0符合條件
          ②a≠0時(shí),分a>0,a<0討論f′(x)在(0,+∞)上的正負(fù),以確定函數(shù)的單調(diào)性的條件,進(jìn)而求出a的取值范圍
          解答:解:(I)(1)∵,∴.(1分)
          ∵f(x)在x=1,x=處取得極值,∴(2分)
          解得
          ∴所求a、b的值分別為-(4分)

          (ii)在存在xo,使得不等式f(xo)-c≤0成立,只需c≥[f(x)]min,
          ==,
          時(shí),f'(x)<0,故f(x)在是單調(diào)遞減;
          當(dāng)時(shí),f'(x)>0,故f(x)在是單調(diào)遞增;
          當(dāng)x∈[1,2]時(shí),f'(x)<0,故f(x)在[1,2]是單調(diào)遞減;
          是f(x)在上的極小值.(6分)
          ,

          又e3-16>0,∴
          ∴[f(x)]min=f(2),∴,∴c的取值范圍為,
          所以c的最小值為-.(9分)

          (Ⅱ)當(dāng)a=b時(shí),f'(x)=,
          ①當(dāng)a=0時(shí),f(x)=1nx.則f(x)在(0,+∞)上單調(diào)遞增;
          ②當(dāng)a>0時(shí),∵x>0,∴2ax2+x+a>0,∴f'(x)>0,則f(x)在(0,+∞)上單調(diào)遞增;
          ③當(dāng)a<0時(shí),設(shè)g(x)=2ax2+x+a,只需△≤0,從面得,此時(shí)f(x)在(0+∞)上單調(diào)遞減;
          綜上得,a的取值范圍是.(14分)
          點(diǎn)評(píng):本題(I)(i)考查了函數(shù)取得極值的性質(zhì):若函數(shù)在x處取得極值⇒則f(x)=0,但f′(x)=0,x不一定是函數(shù)的極值點(diǎn),即某點(diǎn)的導(dǎo)數(shù)為0是該點(diǎn)為極值的必要不充分條件.
          (ii)注意是“存在”,使得c≥f(x)成立?c≥f(xmin;
          若是“任意”使得c≥f(x)恒成立?c≥f(x)max,要區(qū)別兩種不同的情況.
          (II)結(jié)合極值考查函數(shù)的單調(diào)性,需要注意分類討論的思想在解題中的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x3+3x2+6x+4,a,b都是實(shí)數(shù),且f(a)=14,f(b)=-14,則a+b的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足Sn=
          1
          2
          (1-an).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)函數(shù)f(x)=log
          1
          3
          x
          ,bn=f(a1)+f(a2)+…+f(an),求Tn=
          1
          b1
          +
          1
          b2
          +
          1
          b3
          +
          1
          bn
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          1  (x>0)
          -1(x<0)
          ,則不等式xf(x)+x≤4的解集是
          (-∞,0)∪(0,2]
          (-∞,0)∪(0,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2-1,當(dāng)自變量x由1變到1.1時(shí),函數(shù)的平均變化率是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•重慶)設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(  )

          查看答案和解析>>

          同步練習(xí)冊答案