日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}和{bn}中,數(shù)學(xué)公式,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
          (Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項(xiàng)和;
          (Ⅱ)證明:當(dāng)數(shù)學(xué)公式時,數(shù)列{bn}中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列.

          (Ⅰ)解:∵a1=b1,∴a=a+1+b,∴b=-1
          ∵a2<b2,∴a2<2a+1

          ∵a≥2,∴a=2
          ∴bn=(a+1)n+b=3n-1
          ∴數(shù)列{bn}的前n項(xiàng)和為;
          (Ⅱ)證明:當(dāng)時,bn=(a+1)n+b=3n+
          設(shè)數(shù)列{bn}中的任意三項(xiàng)能構(gòu)成等比數(shù)列,不妨設(shè)bx,by,bz(0≤x<y<z≤n)為任意三項(xiàng)成等比數(shù)列,
          則by 2 =bx•bz,即(3y+2=(3x+)•(3z+),化簡得

          ∴x2-6xz+z2=0
          ∵0≤x<y<z≤n,且x、y、z為整數(shù),
          ∴此方程無整數(shù)解.
          故當(dāng)時,數(shù)列{bn}中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列.
          分析:(Ⅰ)根據(jù)a1=b1,可得b=-1,利用a2<b2,a≥2,可得a=2,從而可求數(shù)列{bn}的通項(xiàng)與前n項(xiàng)和;
          (Ⅱ)設(shè)數(shù)列{bn}中的任意三項(xiàng)能構(gòu)成等比數(shù)列,不妨設(shè)bx,by,bz(0≤x<y<z≤n)為任意三項(xiàng)成等比數(shù)列,所以by 2 =bx•bz,即,從而,結(jié)合0≤x<y<z≤n,且x、y、z為整數(shù),即可知當(dāng)時,數(shù)列{bn}中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列.
          點(diǎn)評:本題考查了等差數(shù)列和等比數(shù)列的綜合,考查數(shù)列求和,考查反證法思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
          (Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項(xiàng)和;
          (Ⅱ)證明:當(dāng)a=2,b=
          2
          時,數(shù)列{bn}中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列;
          (Ⅲ)設(shè)A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,試說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
          (Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項(xiàng)和;
          (Ⅱ)證明:當(dāng)a=2,b=
          2
          時,數(shù)列{bn}中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.設(shè)A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,試說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年北京市清華附中高三統(tǒng)練數(shù)學(xué)試卷6(理科)(解析版) 題型:解答題

          在數(shù)列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
          (Ⅰ)若a1=b1,a2<b2,求數(shù)列{bn}的前n項(xiàng)和;
          (Ⅱ)證明:當(dāng)時,數(shù)列{bn}中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列;
          (Ⅲ)設(shè)A={a1,a2,a3,…},B={b1,b2,b3,…},試問在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,試說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案