日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設f(x)=2cos(
          π
          4
           x+
          π
          3
          ),若對任意的x∈R,恒有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值是( 。
          分析:由題意確定x1、x2是函數(shù)f(x)取最大、最小值是對應x的值,再求出函數(shù)的周期,根據余弦函數(shù)的性質求出|x1-x2|的式子,再求出式子和最小值.
          解答:解:∵f(x1)≤f(x)≤f(x2),
          ∴x1、x2是函數(shù)f(x)取最大、最小值是對應x的值,
          故|x1-x2|一定是
          T
          2
          的整數(shù)倍,
          ∵f(x)=2cos(
          π
          4
          x+
          π
          3
          )的最小正周期T=
          π
          4
          =8
          ,
          ∴|x1-x2|=n×
          T
          2
          =4n(n>0,且n∈Z),
          ∴|x1-x2|的最小值為4,
          故選A.
          點評:本題考查了余弦函數(shù)的最值和周期的應用,以及函數(shù)恒成立問題,考查了轉化思想.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設函數(shù)f(x)=2cos(2x+
          π
          3
          )+
          3
          (sinx+cosx)2
          (Ⅰ)求函數(shù)f(x)的最大值和最小正周期;
          (Ⅱ)設A,B,C為△ABC的三個內角,若cosB=
          1
          3
          ,f(
          π
          4
          +
          C
          2
          )=
          3
          2
          ,且C為銳角,求sinA的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知向量
          m
          =(cosx,1-asinx),
          n
          =(cosx,2),設f(x)=
          m
          n
          ,且函數(shù)f(x)的最大值為g(a).
          (Ⅰ)求函數(shù)g(a)的解析式.
          (Ⅱ)設0≤θ≤2π,求函數(shù)(2cosθ+1)的最大值和最小值以及對應的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•煙臺一模)設ω是正實數(shù),函數(shù)f(x)=2cosωx在x∈[0,
          3
          ]
          上是減函數(shù),那么ω的值可以是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在△ABC中,a,b,c分別是角A,B,C的對邊,向量
          m
          =(cos 
          π
          6
          ,cos(π-A)-1),
          n
          =(2cos(
          π
          2
          -A),2sin 
          π
          6
          ),且
          m
          n

          (1)求角A的大。
          (2)設f(x)=cos2x+2sinAsinxcosx,求f(x)的最小正周期,求當 x ∈[-
          π
          4
          ,
          π
          2
          ]
          時f(x)的值域.

          查看答案和解析>>

          同步練習冊答案