日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知F1、F2分別是雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          的左、右焦點,A是其右頂點,過作x軸的垂線與雙曲線的一個交點為P,G是△PF1F2的重心,若
          .
          GA
          .
          F1F2
          =0
          ,則雙曲線的離心率為
           
          分析:求出F1,F(xiàn)2、A、G、P的坐標,由
          GA
          F1F2
          =0,得GA⊥F1F2,故G、A 的橫坐標相同,可得
          c
          3
          =a,從而求出雙曲線的離心率.
          解答:解:由題意可得  F1 (-c,0),F(xiàn)2 (c,0),A(a,0).把x=c代入雙曲線方程可得y=±
          b2
          a 
          ,
          故一個交點為P(c,
          b2
          a 
          ),由三角形的重心坐標公式可得G(
          c
          3
          ,
          b2
          3a
           ).
          GA
          F1F2
          =0,則 GA⊥F1F2,
          ∴G、A 的橫坐標相同,
          c
          3
          =a,
          c
          a
          =3,
          故答案為3.
          點評:本題考查雙曲線的標準方程,以及雙曲線的簡單性質,角形的重心坐標公式,求出重心G的坐標是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2013•湖南)已知F1,F(xiàn)2分別是橢圓E:
          x25
          +y2=1
          的左、右焦點F1,F(xiàn)2關于直線x+y-2=0的對稱點是圓C的一條直徑的兩個端點.
          (Ⅰ)求圓C的方程;
          (Ⅱ)設過點F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當ab最大時,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•青島二模)已知F1、F2分別是雙曲線C:
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)的左、右焦點,P為雙曲線右支上的一點,
          PF2
          F1F2
          ,且|
          PF1
          |=
          2
          |
          PF2
          |
          ,則雙曲線的離心率為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知F1,F(xiàn)2分別是雙曲線
          x2
          a2
          -
          y2
          b2
          =1 (a>0, b>0)
          的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點,且橢圓C的離心率e=
          1
          2
          ,F(xiàn)1也是拋物線C1:y2=-4x的焦點.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點F2的直線l交橢圓C于D,E兩點,且2
          DF2
          =
          F2E
          ,點E關于x軸的對稱點為G,求直線GD的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知F1,F(xiàn)2分別是雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)
          的左,右焦點,P是雙曲線的上一點,若
          PF1
          PF2
          =0
          |
          PF1
          |•|
          PF2
          |=3ab
          ,則雙曲線的離心率是
           

          查看答案和解析>>

          同步練習冊答案