日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知1≤x≤2,2≤y≤3,當x,y在可取值范圍內(nèi)變化時,不等式xy≤ax2+2y2恒成立,則實數(shù)a的取值范圍是   
          【答案】分析:由題意,分離參數(shù),再用換元法,確定函數(shù)的最值,即可求得實數(shù)a的取值范圍.
          解答:解:由題意,分離參數(shù)可得a≥,對于x∈[1,2],y∈[2,3]恒成立,
          令t=,則1≤t≤3,
          ∴a≥t-2t2在[1,3]上恒成立,
          ∵y=-2t2+t=-2(t-2+
          ∵1≤t≤3,
          ∴ymax=-1,
          ∴a≥-1
          故答案為:[-1,+∞).
          點評:本題考查的是不等式與恒成立的綜合類問題.在解答的過程當中充分體現(xiàn)了分類參數(shù)法的運用,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,設函數(shù)g(x)=f(x)-2kx.
          (1)若f(1)=0,且函數(shù)f(x)的值域為[0,+∞),求f(x)的表達式;
          (2)若g(x)在x∈[-1,1]上是單調(diào)函數(shù),求實數(shù)k的取值范圍.
          (3)求g(x)在x∈[-2,2]上的最小值h(k).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知1≤x≤2,2≤y≤3,當x,y在可取值范圍內(nèi)變化時,不等式xy≤ax2+2y2恒成立,則實數(shù)a的取值范圍是
          [-1,+∞)
          [-1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知函數(shù)f(x)=x2,g(x)為一次函數(shù),且為增函數(shù),若f[g(x)]=4x2-20x+15,求g(x)的解析式;

          (2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

          (3)f(x)是R上的奇函數(shù),且x∈(-∞,0)時,f(x)=x2+2x,求f(x);

          (4)某工廠生產(chǎn)一種機器的固定成本為5 000元,且每生產(chǎn)100部,需要增加投入2 500元,對銷售市場進行調(diào)查后得知,市場對此產(chǎn)品的需求量為每年500部,已知銷售收入的函數(shù)為H(x)=500x-x2,其中x是產(chǎn)品售出的數(shù)量,且0≤x≤500.若x為年產(chǎn)量,y表示利潤,求y=f(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年江蘇省南通一中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

          已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,設函數(shù)g(x)=f(x)-2kx.
          (1)若f(1)=0,且函數(shù)f(x)的值域為[0,+∞),求f(x)的表達式;
          (2)若g(x)在x∈[-1,1]上是單調(diào)函數(shù),求實數(shù)k的取值范圍.
          (3)求g(x)在x∈[-2,2]上的最小值h(k).

          查看答案和解析>>

          同步練習冊答案