日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)f(x)=ax2+bx+c經(jīng)過點(diǎn)(0,0),導(dǎo)數(shù)f′(x)=2x+1,當(dāng)x∈[n,n+1](n∈N*)時(shí),f(x)是整數(shù)的個(gè)數(shù)記為an
          (1)求a、b、c的值;
          (2)求數(shù)列{an}的通項(xiàng)公式;
          (3)令bn=
          2anan+1
          ,求{bn}的前n項(xiàng)和Sn
          分析:(1)先根據(jù)f(0)=0求得c,進(jìn)而對(duì)函數(shù)f(x)的解析式求導(dǎo),進(jìn)而求得b和a.
          (2)先根據(jù)題意可知an=(n+1)(n+2)-n(n+1)+1進(jìn)而求得 an+1兩式相減可推斷數(shù)列{an}是等差數(shù)列,進(jìn)而根據(jù)等差數(shù)列的通項(xiàng)公式求得答案.
          (3)把(2)中求得的an代入bn,進(jìn)而利用裂項(xiàng)法求和.
          解答:解:(1)∵f(0)=c=0
          ∴c=0,
          f′(x)=2ax+b=2x+1
          ∴a=1,b=1
          (2)依題意可知an=(n+1)(n+2)-n(n+1)+1=2(n+1)+1,an+1=(n+2)(n+3)-(n+1)(n+2)+1=2(n+2)+1,
          ∴a(n+1)-an=2,a1=5
          ∴數(shù)列{an}是以5為首項(xiàng),2為公差的等差數(shù)列,
          ∴an=5+(n-1)×2=2n+3
          (3)bn=
          2
          anan+1
          =
          1
          2n+3
          -
          1
          2n+5
          ,{bn}的前n項(xiàng)和 Sn=
          1
          5
          -
          1
          7
          +
          1
          7
          -
          1
          9
          +…+
          1
          2n+3
          --
          1
          2n+5
          =
          1
          5
          --
          1
          2n+5
          =
          2n
          5(2n+5)
          點(diǎn)評(píng):本題主要考查了等差數(shù)列的性質(zhì)和用裂項(xiàng)法數(shù)列求和.高考中數(shù)列題往往與不等式、函數(shù)等知識(shí)綜合考查,所以平時(shí)應(yīng)加強(qiáng)這方面的復(fù)習(xí).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2+2(m-2)x+m-m2
          (I)若函數(shù)的圖象經(jīng)過原點(diǎn),且滿足f(2)=0,求實(shí)數(shù)m的值.
          (Ⅱ)若函數(shù)在區(qū)間[2,+∞)上為增函數(shù),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(diǎn)(0,1),且與x軸有唯一的交點(diǎn)(-1,0).
          (Ⅰ)求f(x)的表達(dá)式;
          (Ⅱ)設(shè)函數(shù)F(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為g(k),求g(k)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2-16x+q+3.
          (1)若函數(shù)在區(qū)間[-1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
          (2)若記區(qū)間[a,b]的長(zhǎng)度為b-a.問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t?請(qǐng)對(duì)你所得的結(jié)論給出證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•廣州一模)已知二次函數(shù)f(x)=x2+ax+m+1,關(guān)于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數(shù).設(shè)g(x)=
          f(x)x-1

          (1)求a的值;
          (2)k(k∈R)如何取值時(shí),函數(shù)φ(x)=g(x)-kln(x-1)存在極值點(diǎn),并求出極值點(diǎn);
          (3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知二次函數(shù)f(x)的圖象與x軸的兩交點(diǎn)為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
          (2)已知二次函數(shù)f(x)的圖象的頂點(diǎn)是(-1,2),且經(jīng)過原點(diǎn),求f(x)的解析式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案