日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長的比為3:1,在滿足條件①、②的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程.
          分析:圓被x軸分成兩段圓弧,其弧長的比為3:1,劣弧所對的圓心角為90°,設(shè)圓的圓心為P(a,b),圓P截X軸所得的弦長為
          2
          r
          ,
          截y軸所得弦長為2;可得圓心軌跡方程,圓心到直線l:x-2y=0的距離最小,利用基本不等式,求得圓的方程.
          解答:解法一:設(shè)圓的圓心為P(a,b),半徑為r,則點(diǎn)P到x軸,y軸的距離分別為|b|,|a|.
          由題設(shè)知圓P截x軸所得劣弧對的圓心角為90°,知圓P截X軸所得的弦長為
          2
          r
          ,故r2=2b2,
          又圓P截y軸所得的弦長為2,所以有
          r2=a2+1.
          從而得2b2-a2=1.
          又點(diǎn)P(a,b)到直線x-2y=0的距離為d=
          |a-2b|
          5
          ,
          所以5d2=|a-2b|2
          =a2+4b2-4ab
          ≥a2+4b2-2(a2+b2
          =2b2-a2=1,
          當(dāng)且僅當(dāng)a=b時上式等號成立,此時5d2=1,從而d取得最小值.
          由此有
          a=b
          2b2-a2=1

          解此方程組得
          a=1
          b=1
          a=-1
          b=-1.

          由于r2=2b2r=
          2

          于是,所求圓的方程是
          (x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2.
          解法二:同解法一,得d=
          |a-2b|
          5

          a-2b=±
          5
          d

          a2=4b2±4
          5
          bd+5d2

          將a2=2b2-1代入①式,整理得2b2±4
          5
          db+5d2+1=0

          把它看作b的二次方程,由于方程有實(shí)根,故判別式非負(fù),即
          △=8(5d2-1)≥0,
          得5d2≥1.
          ∴5d2有最小值1,從而d有最小值
          5
          5

          將其代入②式得2b2±4b+2=0.解得b=±1.
          將b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.
          綜上a=±1,b=±1,r2=2.
          由|a-2b|=1知a,b同號.
          于是,所求圓的方程是
          (x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2.
          點(diǎn)評:本小題主要考查軌跡的思想,求最小值的方法,考查綜合運(yùn)用知識建立曲線方程的能力.易錯的地方,
          P到x軸,y軸的距離,不能正確利用基本不等式.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)P是圓x2+y2=1上的動點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
          QM
          =2
          QP
          的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)設(shè)過點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說明、證明過程或演算步驟.
          A.選修4-1:(幾何證明選講)
          如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
          AB與OP交于點(diǎn)M,設(shè)CD為過點(diǎn)M且不過圓心O的一條弦,
          求證:O,C,P,D四點(diǎn)共圓.
          B.選修4-2:(矩陣與變換)
          已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量e1=[
           
          1
          1
          ],并且矩陣M對應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
          C.選修4-4:(坐標(biāo)系與參數(shù)方程)
          在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
          2
          sin(θ-
          π
          4
          ),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          (t為參數(shù)),求直線l被曲線C所截得的弦長.
          D.選修4-5(不等式選講)
          已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點(diǎn)P是圓x2+y2=1上的動點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件數(shù)學(xué)公式的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)設(shè)過點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷3(文科)(解析版) 題型:解答題

          已知點(diǎn)P是圓x2+y2=1上的動點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)設(shè)過點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷(文科)(解析版) 題型:解答題

          已知點(diǎn)P是圓x2+y2=1上的動點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)設(shè)過點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案