日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C1 +x2=1(a>1)與拋物線C :x2=4y有相同焦點(diǎn)F1
          (Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
          (Ⅱ)已知直線l1過橢圓C1的另一焦點(diǎn)F2 , 且與拋物線C2相切于第一象限的點(diǎn)A,設(shè)平行l(wèi)1的直線l交橢圓C1于B,C兩點(diǎn),當(dāng)△OBC面積最大時(shí),求直線l的方程.

          【答案】解:(Ⅰ)∵拋物線x2=4y的焦點(diǎn)為F1(0,1), ∴c=1,又b2=1,∴
          ∴橢圓方程為: +x2=1.
          (Ⅱ)F2(0,﹣1),由已知可知直線l1的斜率必存在,

          設(shè)直線l1:y=kx﹣1
          消去y并化簡得x2﹣4kx+4=0
          ∵直線l1與拋物線C2相切于點(diǎn)A.
          ∴△=(﹣4k)2﹣4×4=0,得k=±1.
          ∵切點(diǎn)A在第一象限.
          ∴k=1
          ∵l∥l1
          ∴設(shè)直線l的方程為y=x+m
          ,消去y整理得3x2+2mx+m2﹣2=0,
          △=(2m)2﹣12(m2﹣2)>0,
          解得
          設(shè)B(x1 , y1),C(x2 , y2),則 ,
          又直線l交y軸于D(0,m)

          =
          當(dāng) ,即 時(shí),
          所以,所求直線l的方程為
          【解析】(Ⅰ)求出拋物線的F1(0,1),利用橢圓的離心率,求出a、b即可求解橢圓方程.(Ⅱ)F2(0,﹣1),由已知可知直線l1的斜率必存在,聯(lián)立方程組,利用相切求出k,然后利用直線的平行,設(shè)直線l的方程為y=x+m聯(lián)立方程組,通過弦長公式點(diǎn)到直線的距離求解三角形的面積,然后得到所求直線l的方程.
          【考點(diǎn)精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)當(dāng)a=2,求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
          (2)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x﹣2.
          (1)求y=f(x)的表達(dá)式;
          (2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成封閉圖形的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣3n(n∈N+).
          (1)求a1 , a2 , a3的值;
          (2)設(shè)bn=an+3,證明數(shù)列{bn}為等比數(shù)列,并求通項(xiàng)公式an

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,an+1=2Sn+1,數(shù)列{bn}滿足a1=b1 , 點(diǎn)P(bn , bn+1)在直線x﹣y+2=0上,n∈N*
          (1)求數(shù)列{an},{bn}的通項(xiàng)公式;
          (2)設(shè) ,求數(shù)列{cn}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,1),且同時(shí)滿足下列條件:
          ①f(x)是奇函數(shù);
          ②f(x)在定義域上單調(diào)遞減;
          ③f(1﹣a)+f(1﹣a2)<0.
          求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)g(x)=ax2﹣2ax﹣1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設(shè)f(x)=
          (1)求a,b的值;
          (2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C:y2=2px(p>0)
          (1)若直線x﹣y﹣2=0過拋物線C的焦點(diǎn),求拋物線C的方程,并求出準(zhǔn)線方程;
          (2)設(shè)p=2,A,B是C上異于坐標(biāo)原點(diǎn)O的兩個(gè)動(dòng)點(diǎn),滿足OA⊥OB,△ABO的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
          (1)求證:{ + }為等比數(shù)列,并求{an}的通項(xiàng)公式an;
          (2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項(xiàng)和Tn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案