日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對(duì)于函數(shù)①f(x)=|x+2|;②f(x)=(x-2)2;③f(x)=cos(x-2),現(xiàn)有如下兩個(gè)命題:p:f(x+2)是偶函數(shù);q:f(x)在(-∞,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增;則使命題”(¬p)且q”為假,命題“(¬p)或q”為真的函數(shù)序號(hào)是( 。
          分析:對(duì)于題中所給的3個(gè)函數(shù),它們的定義域均為實(shí)數(shù)集R;于是可以先求出函數(shù)f(x+2)的解析式,①中有f(x+2)=|x+4|,②中有f(x+2)=x2,③中有f(x+2)=cosx,然后判斷f(x+2)的奇偶性;再由函數(shù)f(x)的圖象可得出f(x)的單調(diào)性來(lái).
          解答:解:①函數(shù)f(x)=|x+2|,則有f(x+2)=|x+4|,顯然這不是偶函數(shù),p,q均為假,則¬p為真,
          因此①中的函數(shù)符合要求;
          ②函數(shù)f(x)=(x-2)2,則有f(x+2)=x2,f(x+2)是偶函數(shù),
          又由函數(shù)f(x)的圖象可知f(x)在(-∞,2)上是減函數(shù),在(2,+∞)上是增函數(shù),
          所以p,q均為真,則¬p為假,②符合要求;
          ③中函數(shù)f(x)=cos(x-2),則有f(x+2)=cosx,是偶函數(shù),但是它在(-∞,2)上沒(méi)有單調(diào)性;
          因此p為真,q均為假,則¬p和q均為假,不符合要求.
          故選A.
          點(diǎn)評(píng):本題考查了函數(shù)的奇偶性,單調(diào)性及其判斷與證明;復(fù)合函數(shù)的概念,命題的概念.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
          ①f(x1+x2)=f(x1)f(x2);②f(x1•x2)=f(x1)+f(x2);
          ③(x1-x2)[f(x1)-f(x2)]<0;④f(
          x1+x2
          2
          )<
          f(x1)+f(x2)
          2

          當(dāng)f(x)=2-x時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是
           
          寫出全部正確結(jié)論的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于函數(shù)f(x),定義域?yàn)镈,若存在x0∈D使f(x0)=x0,則稱(x0,x0)為f(x)的圖象上的不動(dòng)點(diǎn). 由此,函數(shù)f(x)=
          9x-5x+3
          的圖象上不動(dòng)點(diǎn)的坐標(biāo)為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結(jié)論:
          ①f(x1+x2)=f(x1)f(x2)②f(x1)f(x2)=f(x1)+f(x2)③
          f(x1)-f(x2)
          x1-x2
          <0

          f(
          x1+x2
          2
          )<
          f(x1)+f(x2)
          2
          ,當(dāng)f(x)=log
          1
          2
          x
          時(shí),上述結(jié)論中正確的序號(hào)是
          ③④
          ③④
          (寫出全部正確結(jié)論的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn),已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
          (1)當(dāng)a=1,b=-2求函數(shù)f(x)的不動(dòng)點(diǎn);
          (2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異不動(dòng)點(diǎn),求a的取值范圍;
          (3)在(2)的條件下,令g(x)=
          1
          x+2
          +loga 
          1+x
          1-x
          ,解關(guān)于x的不等式g[x(x-
          1
          2
          )]<
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于函數(shù)f(x)=x3cos3(x+
          π
          6
          ),下列說(shuō)法正確的是( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案