【題目】分別求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點在坐標(biāo)軸上,且經(jīng)過點A ( ,-2),B(-2
,1);
(2)與橢圓 有相同焦點且經(jīng)過點M(
,1).
【答案】
(1)解:設(shè)所求橢圓的方程為mx2+ny2=1(m>0,n>0,且m≠n),根據(jù)題意可得: ,
解得 ,
∴所求橢圓的標(biāo)準(zhǔn)方程為 +
=1.
(2)解:由橢圓 ,可以知道焦點在x軸上,
,
,
,則
橢圓C的兩焦點分別為:
和
,
設(shè)橢圓C的方程為: ,
把 代入方程,得
,
即 ,
或
(舍),
橢圓C的方程為:
.
【解析】(1)因為橢圓的焦點位置不確定,故不能直接設(shè)a,b,可以先設(shè)為m,n,將兩點坐標(biāo)代入解出m和n的值即可。
(2)根據(jù)已知橢圓方程求出c的值,然后設(shè)出要求的橢圓方程,將點M的坐標(biāo)代入,解出a的值,即可得到方程。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點 分別是Δ
的邊
的中點,連接
.現(xiàn)將
沿
折疊至Δ
的位置,連接
.記平面
與平面
的交線為
,二面角
大小為
.
(1)證明:
(2)證明:
(3)求平面 與平面
所成銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程是 (θ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2sinθ.
(Ⅰ) 求曲線C1與C2交點的平面直角坐標(biāo);
(Ⅱ) 點A,B分別在曲線C1 , C2上,當(dāng)|AB|最大時,求△OAB的面積(O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合…,
…,
,對于
…,
,B=(
…,
,定義A與B的差為
…
,A與B之間的距離為
.
(Ⅰ)若,求
;
(Ⅱ)證明:對任意,有
(i),且
;
(ii)三個數(shù)中至少有一個是偶數(shù);
(Ⅲ)對于…
…
,再定義一種A與B之間的運(yùn)算,并寫出兩條該運(yùn)算滿足的性質(zhì)(不需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角中,
,
,點
在線段
上.
(Ⅰ) 若,求
的長;
(Ⅱ)若點在線段
上,且
,問:當(dāng)
取何值時,
的面積最。坎⑶蟪雒娣e的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,若對任意
都有
(
為常數(shù))成立,則稱
為“等差比數(shù)列”,下面對“等差比數(shù)列” 的判斷:①
不可能為
;②等差數(shù)列一定是等差比數(shù)列; ③等比數(shù)列一定是等差比數(shù)列 ;④通項公式為
(其中
,且
,
)的數(shù)列一定是等差比數(shù)列,其中正確的判斷是( )
A. ①③④ B. ②③④ C. ①④ D. ①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理:“冪勢既同,則積不容異”,它是中國古代一個涉及幾何體體積問題,意思是兩個等高的幾何體,如在同高處的截面積恒相等,則體積相等,設(shè)A,B為兩個等高的幾何體,p:A,B的體積相等,q:A,B在同高處的截面積不恒相等,根據(jù)祖暅原理可知,q是-p的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差大于零的等差數(shù)列{an}的前n項和Sn,且滿足a3·a5=112,a1+a7=22.
(1)求等差數(shù)列{an}的第七項a7和通項公式an;
(2)若數(shù)列{bn}的通項bn=an+an+1,{bn}的前n項和Sn,寫出使得Sn小于55時所有可能的bn的取值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com