日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,記動(dòng)圓圓
          的軌跡為
          (Ⅰ)求曲線的方程;
          (Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),證明直線與曲線恒有且只有一個(gè)公共點(diǎn).
          (Ⅲ)由(Ⅱ)你能否得到一個(gè)更一般的結(jié)論?并且對(duì)雙曲線寫出一個(gè)類似的結(jié)論(皆不必證明).

          解:(Ⅰ)由題知圓圓心為,半徑為,設(shè)動(dòng)圓的圓心為
          半徑為,,由,可知點(diǎn)在圓內(nèi),所以點(diǎn)的軌跡是以為焦點(diǎn)
          的橢圓,設(shè)橢圓的方程為,由,得,
          故曲線的方程為                 ………………………………4分
          (Ⅱ)當(dāng)時(shí),由可得
          當(dāng),時(shí),直線的方程為,直線與曲線有且只有一個(gè)交點(diǎn)
          當(dāng),時(shí),直線的方程為,直線與曲線有且只有一個(gè)交點(diǎn)
          當(dāng)時(shí)得,代入,消去整理得:
          --------------------------------① …………6分
          由點(diǎn)為曲線上一點(diǎn),故.即
          于是方程①可以化簡(jiǎn)為:
          解得.將代入,說(shuō)明直線與曲線有且只有一個(gè)交點(diǎn)
          綜上,不論點(diǎn)在何位置,直線與曲線恒有且只有一個(gè)交點(diǎn),交點(diǎn)即                           …………………………………………8分
          (Ⅲ)更一般的結(jié)論:對(duì)橢圓,過(guò)其上任意一點(diǎn)的切線方程為
          在雙曲線中的類似的結(jié)論是:過(guò)雙曲線 上任意一點(diǎn)的切線方程為:.…………………………………12分

          解析

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (03年北京卷理)(13分)

          已知?jiǎng)訄A過(guò)定點(diǎn)P(1,0),且與定直線相切,點(diǎn)C在l上.

             (Ⅰ)求動(dòng)圓圓心的軌跡M的方程;

             (Ⅱ)設(shè)過(guò)點(diǎn)P,且斜率為-的直線與曲線M相交于A,B兩點(diǎn).

                  (i)問(wèn):△ABC能否為正三角形?若能,求點(diǎn)C的坐標(biāo);若不能,說(shuō)明理由;

                  (ii)當(dāng)△ABC為鈍角三角形時(shí),求這種點(diǎn)C的縱坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011屆貴州省五校高三第五次聯(lián)考文科數(shù)學(xué)(暨遵義四中第13次月考) 題型:解答題

          已知定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,記動(dòng)圓圓
          的軌跡為
          (Ⅰ)求曲線的方程;
          (Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),證明直線與曲線恒有且只有一個(gè)公共點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年貴州省第13次月考) 題型:解答題

          已知定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,記動(dòng)圓圓

          的軌跡為

          (Ⅰ)求曲線的方程;

          (Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),證明直線與曲線恒有且只有一個(gè)公共點(diǎn).

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年貴州省第五校高三第五次聯(lián)考理科數(shù)學(xué)(暨遵義四中13次月考) 題型:解答題

          已知定圓,動(dòng)圓過(guò)點(diǎn)且與圓相切,記動(dòng)圓圓

          的軌跡為

          (Ⅰ)求曲線的方程;

          (Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),證明直線與曲線恒有且只有一個(gè)公共點(diǎn).

          (Ⅲ)由(Ⅱ)你能否得到一個(gè)更一般的結(jié)論?并且對(duì)雙曲線寫出一個(gè)類似的結(jié)論(皆不必證明).

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案