日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上兩點(diǎn)P、Q在x軸上的射影分別為橢圓的左、右焦點(diǎn),且P、Q兩點(diǎn)的連線的斜率為
          2
          2

          (1)求橢圓的離心率e的大;
          (2)若以PQ為直徑的圓與直線x+y+6=0相切,求橢圓C的標(biāo)準(zhǔn)方程;
          (3)設(shè)點(diǎn)M(0,3)在橢圓內(nèi)部,若橢圓C上的點(diǎn)到點(diǎn)M的最遠(yuǎn)距離不大于5
          2
          ,求橢圓C的短軸長的取值范圍.
          分析:(1)先設(shè)出P、Q兩點(diǎn)的坐標(biāo),利用P、Q在x軸上的射影分別為橢圓的左、右焦點(diǎn),且P、Q兩點(diǎn)的連線的斜率為
          2
          2
          .即可求橢圓的離心率e的大小;
          (2)先求出以PQ為直徑的圓的方程,利用圓心到直線的距離等于半徑求出b值即可求橢圓C的標(biāo)準(zhǔn)方程;
          (3)先利用點(diǎn)M(0,3)在橢圓內(nèi)部求出b的一個(gè)范圍,再利用兩點(diǎn)間的距離公式以及最遠(yuǎn)距離不大于5
          2
          ,求出b的另一個(gè)范圍,兩個(gè)相綜合可得橢圓C的短軸長的取值范圍.
          解答:解:(1)設(shè)點(diǎn)(-c,-y0),Q(c,y0),其中y0>0,∵點(diǎn)P在橢圓C上,
          c2
          a2
          +
          y02
          b2
          =1
          ,y02=
          b4
          a2
          ,y0
          b2
          a

          P(-c,-
          b2
          a
          ),Q(c,
          b2
          a
          ),∴kPQ=
          2
          b2
          a
          2c
          =
          b2
          ac
          .∴
          b2
          ac
          =
          2
          2
          ,
          2
          (a2-c2)=ac
          ,
          從而
          2
          (1-e2)=e
          ,解得e=
          2
          2
          ,e=-
          2
          (舍去).
          (2)由(1)知,a=
          2
          b,c=b,∴P(-b,-
          b
          2
          )

          ∴以PQ為直徑的圓的方程為x2+y2=
          3
          2
          b2

          ∵該圓與直線x+y+6=0相切,∴
          6
          2
          =
          6
          2
          b,即b=2
          3
          ,∴b2=12,a2=24

          ∴橢圓的標(biāo)準(zhǔn)方程為
          x2
          24
          +
          y2
          12
          =1

          (3)由(1)知,a=
          2
          b,c=b
          ,故橢圓方程為
          x2
          2b2
          +
          y2
          b2
          =1,∵點(diǎn)M(0,3)
          在橢圓內(nèi)部,
          ∴b>3.
          設(shè)N(x,y)為橢圓上任意一點(diǎn),則MN2=x2+(y-3)2=-(y+3)2+2b2+18,其中-b≤y≤b.∵b>3,
          ∴-b<-3,∴當(dāng)y=-3時(shí),MN2取得最大值2b2+18.
          依題意:MN≤5
          2
          ,∴MN2≤50,∴2b2+18≤50,∴0<b≤4,又b>3,∴3<b≤4,即6<2b≤8.
          ∴橢圓C的短軸長的取值范圍是(6,8].
          點(diǎn)評(píng):本題是對圓與橢圓知識(shí)的綜合考查.當(dāng)直線與圓相切時(shí),可以利用圓心到直線的距離等于半徑求解,也可以把直線與圓的方程聯(lián)立讓對應(yīng)方程的判別式為0求解.本題用的是方法一.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          1
          2
          ,且經(jīng)過點(diǎn)P(1,
          3
          2
          )

          (1)求橢圓C的方程;
          (2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的短軸長為2
          3
          ,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
          (1)求橢圓C的方程;
          (2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
          DA
          DB
          ,若λ∈[
          3
          8
          ,
          1
          2
          ],求直線AB的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)經(jīng)過點(diǎn)A(1,
          3
          2
          ),且離心率e=
          3
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•房山區(qū)二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的長軸長是4,離心率為
          1
          2

          (Ⅰ)求橢圓方程;
          (Ⅱ)設(shè)過點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過橢圓C的右頂點(diǎn)A,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的短軸長為2,離心率為
          2
          2
          ,設(shè)過右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
          AP+BQ
          PQ
          ,若直線l的斜率k≥
          3
          ,則λ的取值范圍為
           

          查看答案和解析>>

          同步練習(xí)冊答案