日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖3-2,設(shè)直線mx+y+2=0與線段AB有交點(diǎn),若A(-2,3)、B(3,2),求m的取值范圍.

          圖3-2

          思路解析:用數(shù)形結(jié)合法解題.直線mx+y+2=0是恒過(guò)點(diǎn)P(0,-2)的斜率為-m的直線,求得kPB=,kPA=,容易得到若直線與線段AB有交點(diǎn),則其斜率所在的區(qū)間為(-∞,)∪(,+∞),從而m的取值范圍是(-∞,)∪(,+∞).

          答案:(-∞,)∪(,+∞).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知直線l1:y=2x+m(m<0)與拋物線C1:y=ax2(a>0)和圓C2:x2+(y+1)2=5都相切,F(xiàn)是C1的焦點(diǎn).
          (1)求m與a的值;
          (2)設(shè)A是C1上的一動(dòng)點(diǎn),以A為切點(diǎn)作拋物線C1的切線l,直線l交y軸于點(diǎn)B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點(diǎn)M在一條定直線上;
          (3)在(2)的條件下,記點(diǎn)M所在的定直線為l2,直線l2與y軸交點(diǎn)為N,連接MF交拋物線C1于P,Q兩點(diǎn),求△NPQ的面積S的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•荊門模擬)如圖,已知直線OP1,OP2為雙曲線E:
          x2
          a2
          -
          y2
          b2
          =1
          的漸近線,△P1OP2的面積為
          27
          4
          ,在雙曲線E上存在點(diǎn)P為線段P1P2的一個(gè)三等分點(diǎn),且雙曲線E的離心率為
          13
          2

          (1)若P1、P2點(diǎn)的橫坐標(biāo)分別為x1、x2,則x1、x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
          (2)求雙曲線E的方程;
          (3)設(shè)雙曲線E上的動(dòng)點(diǎn)M,兩焦點(diǎn)F1、F2,若∠F1MF2為鈍角,求M點(diǎn)橫坐標(biāo)x0的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•莆田模擬)如圖(1),在直角梯形ACC1A1中,∠CAA1=90°,AA1∥CC1,AA1=4,AC=3,CC1=1,點(diǎn)B在線段AC上,AB=2BC,BB1∥AA1,且BB1交A1C1于點(diǎn)B1.現(xiàn)將梯形ACC1A1沿直線BB1折成二面角A-BB1-C,設(shè)其大小為θ.
          (1)在上述折疊過(guò)程中,若90°≤θ≤180°,請(qǐng)你動(dòng)手實(shí)驗(yàn)并直接寫(xiě)出直線A1B1與平面BCC1B1所成角的取值范圍.(不必證明);
          (2)當(dāng)θ=90°時(shí),連接AC、A1C1、AC1,得到如圖(2)所示的幾何體ABC-A1B1C1,
          (i)若M為線段AC1的中點(diǎn),求證:BM∥平面A1B1C1;
          (ii)記平面A1B1C1與平面BCC1B1所成的二面角為α(0<α≤90°),求cosa的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知直線
          l
           
          1
          :y=2x+m(m<0)
          與拋物線C1:y=ax2(a>0)和圓C2x2+(y+1)2=5都相切,F(xiàn)是C1的焦點(diǎn).
          (1)求m與a的值;
          (2)設(shè)A是C1上的一動(dòng)點(diǎn),以A為切點(diǎn)作拋物線C1的切線,直線交y軸于點(diǎn)B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點(diǎn)M在一條定直線上;
          (3)在(2)的條件下,記點(diǎn)M所在的定直線為l2,直線l2與y軸交點(diǎn)為N,連接MF交拋物線C1于P,Q兩點(diǎn),求△NPQ的面積S的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案