(本小題共14分)
設(shè)函數(shù)。
(Ⅰ)若曲線在點
處與直線
相切,求
的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值點。
(Ⅰ)a,b分別為4和24
(Ⅱ)當(dāng)時,函數(shù)
在
上單調(diào)遞增,此時函數(shù)
沒有極值點。
當(dāng)時,
當(dāng)時,函數(shù)
單調(diào)遞增,
當(dāng)時,函數(shù)
單調(diào)遞減,
當(dāng)時,函數(shù)
單調(diào)遞增,
此時是
的極大值點,
是
的極小值點。
本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值、解不等式等基礎(chǔ)知識,考查綜合分析和解決問題的能力。
(Ⅰ),
∵曲線在點
處與直線
相切,
∴
(Ⅱ)∵,
當(dāng)時,
,函數(shù)
在
上單調(diào)遞增,
此時函數(shù)沒有極值點。
當(dāng)時,由
,
當(dāng)時,
,函數(shù)
單調(diào)遞增,
當(dāng)時,
,函數(shù)
單調(diào)遞減,
當(dāng)時,
,函數(shù)
單調(diào)遞增,
∴此時是
的極大值點,
是
的極小值點。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
數(shù)列的前n項和為
,點
在直線
上.
(I)求證:數(shù)列是等差數(shù)列;
(II)若數(shù)列滿足
,求數(shù)列
的前n項和
(III)設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,
,點E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)且E為PB的中點時,求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為
,右準(zhǔn)線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)直線是圓
上動點
處的切線,
與雙曲線
交
于不同的兩點,證明
的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD底面ABCD,PD=DC,點E是PC的中點,作EF
PB交PB于點F
⑴求證:PA//平面EDB
⑵求證:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題
(本小題共14分)
正方體的棱長為
,
是
與
的交點,
為
的中點.
(Ⅰ)求證:直線∥平面
;
(Ⅱ)求證:平面
;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com