日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=x-1-ln2x+2alnx(x>0).令F(x)=xf(x),則F′(x)=   
          【答案】分析:先根據(jù)題意求出F(x),然后求出F(x)的導(dǎo)數(shù)即可.
          解答:解:∵f(x)=x-1-ln2x+2alnx(x>0)
          ∴F(x)=xf(x)=x(x-1-ln2x+2alnx)=x2-x-xln2x+2axlnx(x>0)
          ∴F′(x)=2x-1-ln2x-2lnx+2alnx+2a
          故答案為2x-1-ln2x-2lnx+2alnx+2a(x>0).
          點(diǎn)評:本題考查求導(dǎo)數(shù)公式,比如(xα)′=αxα-1;(lnx)′=;(uv)′=u′v+uv′等求導(dǎo)法則.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(
          x
          -1)=-x
          ,則函數(shù)f(x)的表達(dá)式為( 。
          A、f(x)=x2+2x+1(x≥0)
          B、f(x)=x2+2x+1(x≥-1)
          C、f(x)=-x2-2x-1(x≥0)
          D、f(x)=-x2-2x-1(x≥-1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
          (Ⅰ)求g(x)的解析式;
          (Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
          (Ⅲ)若k=
          1
          3
          ,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間[
          1
          2
          ,a]
          上的值域?yàn)?span id="nd4i9v0" class="MathJye">[
          1
          a
          ,1],若存在,求出a的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x
          1
          2
          +x-
          1
          2
          )=x+x-1-2
          ,則 f(x+1)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=
          x
          +
          1
          x
          +
          x+
          1
          x
          +1
          g(x)=
          x
          +
          1
          x
          -
          x+
          1
          x
          +1

          (1)分別求f(x)、g(x)的定義域,并求f(x)•g(x)的值;(2)求f(x)的最小值并說明理由;
          (3)若a=
          x2+x+1
           , b=t
          x
           , c=x+1
          ,是否存在滿足下列條件的正數(shù)t,使得對于任意的正
          數(shù)x,a、b、c都可以成為某個(gè)三角形三邊的長?若存在,則求出t的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

          已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
          (Ⅰ)求g(x)的解析式;
          (Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
          (Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案