日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED是以BD為直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD. (Ⅰ)求證:AD⊥平面BFED;
          (Ⅱ)在線段EF上是否存在一點(diǎn)P,使得平面PAB與平面ADE所成的銳二面角的余弦值為 .若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由.

          【答案】解:(Ⅰ)在梯形ABCD中,
          ∵AB∥CD,AD=DC=CB=1,∠BCD=120°,
          ∴故 AB=2,
          ∴BD2=AB2+AD2﹣2ABADcos60°=3,
          ∴AB2=AD2+BD2
          ∴BD⊥AD,
          ∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,
          ∴AD⊥平面BFED.
          (Ⅱ)∵AD⊥平面BFED,∴AD⊥DE,
          以D為原點(diǎn),分別以DA,DE,DE為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,
          則D(0,0,0),A(1,0,0),B(0, ,0),P(0,λ, ),
          =(﹣1, ,0), =

          取平面EAD的一個(gè)法向量為 =(0,1,0),
          設(shè)平面PAB的一個(gè)法向量為 =(x,y,z),
          =0, =0得: ,取y=1,可得 =( ).
          ∵二面角A﹣PD﹣C為銳二面角,平面PAB與平面ADE所成的銳二面角的余弦值為
          ∴cos< = = = ,
          解得λ= ,即P為線段EF的3等分點(diǎn)靠近點(diǎn)E的位置
          【解析】(Ⅰ)推出AB=2,求解AB2=AD2+BD2 , 證明BD⊥AD,然后證明AD⊥平面BFED.(Ⅱ)以D為原點(diǎn),分別以DA,DE,DE為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),求出平面EAD的一個(gè)法向量,平面PAB的一個(gè)法向量,利用向量的數(shù)量積,轉(zhuǎn)化求解即可.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),記不等式f(x)4的解集為M,記函數(shù)的定義域?yàn)榧螻.

          (Ⅰ)求集合M和N;

          (Ⅱ)求MN和M(RN).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將邊長(zhǎng)為2的正沿著高折起,使,若折起后四點(diǎn)都在球的表面上,則球的表面積為(

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=sinωx(>0)的圖象向右平移 個(gè)單位得到函數(shù)y=g(x)的圖象,并且函數(shù)g(x)在區(qū)間[ , ]上單調(diào)遞增,在區(qū)間[ ]上單調(diào)遞減,則實(shí)數(shù)ω的值為(
          A.
          B.
          C.2
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在棱長(zhǎng)為2的正方體中, 分別為的中點(diǎn).

          (1)求證: 平面;

          (2)在棱上是否存在一點(diǎn),使得二面角的大小為,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測(cè)算,自行車廠的總收益(單位:元)滿足分段函數(shù)h(x),其中,x是新樣式單車的月產(chǎn)量(單位:件),利潤(rùn)=總收益﹣總成本.

          (1)試將自行車廠的利潤(rùn)y元表示為月產(chǎn)量x的函數(shù);

          (2)當(dāng)月產(chǎn)量為多少件時(shí)自行車廠的利潤(rùn)最大?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知關(guān)于x的不等式|x﹣3|+|x﹣m|≥2m的解集為R. (Ⅰ)求m的最大值;
          (Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此時(shí)a,b,c的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的離心率e=,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

          (1)求橢圓的方程;

          (2)設(shè)直線過(guò)橢圓的左端點(diǎn)A,與橢圓的另一個(gè)交點(diǎn)為B.,AB的垂直平分線交軸于點(diǎn),且·=4,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知f(x)=ax-lnx,a∈R.

          (1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;

          (2)是否存在實(shí)數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案