日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=lnx,g(x)=lnx﹣x+2.
          (1)求函數(shù)g(x)的極大值;
          (2)若關(guān)于x的不等式 在[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
          (3)已知 ,試比較f(tanα)與﹣cos2α的大小,并說(shuō)明理由.

          【答案】
          (1)解:∵g(x)=lnx﹣x+2,(x>0),則g′(x)=

          當(dāng)x∈(0,1)時(shí),g′(x)>0,當(dāng)x∈(1,+∞)時(shí),g′(x)<0,

          ∴g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,

          ∴當(dāng)x=1時(shí),函數(shù)g(x)取得極大值1


          (2)解:mf(x)≥ mlnx﹣ ≥0,

          令h(x)=mlnx﹣ ,則h′(x)=

          ∵h(yuǎn)(1)=0,故當(dāng)m(x+1)2﹣2x≥0[1,+∞)在上恒成立時(shí),

          使得函數(shù)h(x)在[1,+∞)上單調(diào)遞增,

          ∴m≥ = 在[1,+∞)上恒成立,故m≥ ;

          經(jīng)驗(yàn)證,當(dāng)m≥ 時(shí),函數(shù)h′(x)≥0在[1,+∞)上恒成立;

          當(dāng)m< 時(shí),不滿足題意.

          ∴m≥


          (3)解:令F(α)=ln(tanα)+cos2α,則F′(α)= ,

          ∵α∈(0, ),∴sin2α>0,∴F′(α)>0,

          故F(α)單調(diào)遞增,又F( )=0,

          ∴當(dāng)0<α< 時(shí),f(tanα)<﹣cos2α;

          當(dāng)α= 時(shí),f(tanα)=﹣cos2α;

          當(dāng) <α< ,f(tanα)>﹣cos2α


          【解析】(1)求出g(x)的導(dǎo)數(shù),得到g(x)的單調(diào)區(qū)間,從而求出g(x)的極大值即可;(2)問(wèn)題轉(zhuǎn)化為mlnx﹣ ≥0,令h(x)=mlnx﹣ ,求出函數(shù)h(x)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出m的范圍即可;(3)令F(a)=ln(tana)+cos2a,求出函數(shù)F(a)的導(dǎo)數(shù),根據(jù)a的范圍,求出函數(shù)的單調(diào)性,從而比較f(tana)和﹣cos2a的大小即可.
          【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)的極值與導(dǎo)數(shù),掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C: + =1(a>b>0)經(jīng)過(guò)點(diǎn)P(2, ),離心率e= ,直線l的漸近線為x=4.
          (1)求橢圓C的方程;
          (2)經(jīng)過(guò)橢圓右焦點(diǎn)D的任一直線(不經(jīng)過(guò)點(diǎn)P)與橢圓交于兩點(diǎn)A,B,設(shè)直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1 , k2 , k3 , 問(wèn)是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將函數(shù) 圖象上的點(diǎn) 向右平移m(m>0)個(gè)單位長(zhǎng)度得到點(diǎn)P',若P'位于函數(shù)y=cos2x的圖象上,則(
          A. ,m的最小值為
          B. ,m的最小值為
          C. ,m的最小值為
          D. ,m的最小值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C: =1 (a>b>0)的短軸長(zhǎng)為2,過(guò)上頂點(diǎn)E和右焦點(diǎn)F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
          (I)求橢圓C的標(biāo)準(zhǔn)方程;
          (Ⅱ)若直線l過(guò)點(diǎn)(1,0),且與橢圓C交于點(diǎn)A,B,則在x軸上是否存在一點(diǎn)T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標(biāo)原點(diǎn)),若存在,求出 t的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)A(1,0),若點(diǎn)B是曲線y=f(x)上的點(diǎn),且線段AB的中點(diǎn)在曲線y=g(x)上,則稱點(diǎn)B是函數(shù)y=f(x)關(guān)于函數(shù)g(x)的一個(gè)“關(guān)聯(lián)點(diǎn)”,已知f(x)=|log2x|,g(x)=( x , 則函數(shù)f(x)關(guān)于函數(shù)g(x)的“關(guān)聯(lián)點(diǎn)”的個(gè)數(shù)是(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知正三棱錐P﹣ABC的外接球的球心O滿足 =0,則二面角A﹣PB﹣C的正弦值為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)f(x)=(lnx)ln(1﹣x).
          (1)求函數(shù)y=f(x)的圖象在( ,f( ))處的切線方程;
          (2)求函數(shù)y=f′(x)的零點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有金箠,長(zhǎng)五尺,斬本一尺,重四斤,斬末一尺,重二斤,問(wèn)次一尺各重幾何?”意思是:“現(xiàn)有一根金箠,長(zhǎng)五尺,一頭粗,一頭細(xì),在粗的一端截下1尺,重4斤;在細(xì)的一端截下1尺,重2斤;問(wèn)依次每一尺各重多少斤?”根據(jù)上題的已知條件,若金箠由粗到細(xì)是均勻變化的,問(wèn)第二尺與第四尺的重量之和為(
          A.6 斤
          B.9 斤
          C.9.5斤
          D.12 斤

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知曲線C: (θ為參數(shù)),直線l1:kx﹣y+k=0,l2:cosθ﹣2sinθ=
          (Ⅰ)寫出曲線C和直線l2的普通方程;
          (Ⅱ)l1與C交于不同兩點(diǎn)M,N,MN的中點(diǎn)為P,l1與l2的交點(diǎn)為Q,l1恒過(guò)點(diǎn)A,求|AP||AQ|

          查看答案和解析>>

          同步練習(xí)冊(cè)答案