函數定義在區(qū)間
都有
且
不恒為零.
(1)求的值;
(2)若且
求證:
;
(3)若求證:
在
上是增函數.
(1).(2)(3)見解析
解析試題分析:(1)通過帶特殊值可求得;(2)設
,同取以
為底的對數得
,
,把
代入在運用對數運算性質就可得
,有
,所以
,要證
只需證
,由以上很容易得到
,需要證出
時,
即等號不成立;(3)設
,則
,所以得
時,
,任取
,
得證.
試題解析:⑴令,
,
,
因為,所以
. 3分
⑵設,則
,所以
, 5分
因為,所以
,所以
,
,
. 8分
下面證明當時,
.
假設存在,
,則對于任意
,
,不合題意.所以,當
時,
.
因為,所以存在
,
,
所以,所以
. 10分
⑶設,則
, 12分
設,
為區(qū)間
內的任意兩個值,且
,則
,由⑵的證明知,
,
所以,所以
在
上是增函數. 16分
考點:1.函數附特殊值法;2.函數的構造法;3.證明單調函數.
科目:高中數學 來源: 題型:解答題
遼寧號航母紀念章從2012年10月5日起開始上市.通過市場調查,得到該紀念章每1枚的市場價 (單位:元)與上市時間
(單位:天)的數據如下:
上市時間![]() | 4 | 10 | 36 |
市場價![]() | 90 | 51 | 90 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標原點).
(1)寫出a1,a2,a3;
(2)求出點An(an,0)(n∈N*)的橫坐標an關于n的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關于
的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求
關于
的函數關系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關于
的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求
關于
的函數關系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經市場調查,某種商品在過去50天的銷售量和價格均為銷售時間t(天)的函數,且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N).前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數關系;
(2)求日銷售額S的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com