日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設數(shù)列{an}的前n項和為Sn,且Sn=4an-p,其中p是不為零的常數(shù)。
          (1)證明:數(shù)列{an}是等比數(shù)列;
          (2)當p=3時,若數(shù)列{bn}滿足bn+1=bn+an(n∈N*),b1=2,求數(shù)列{bn}的通項公式。
          解:(1)因為Sn=4an-p(n∈N*),
          則Sn-1=4an-1-p(n∈N*,n≥2),
          所以當n≥2時,an=Sn-Sn-1=4an-4an-1
          整理得an=
          由Sn=4an-p,令n=1,得a1=4a1-p,
          解得
          所以{an}是首項為公比為的等比數(shù)列。
          (2)因為當p=3時,a1=1,則
          (n=1,2…),得
          當n≥2時,由累加得

          當n=1時,上式也成立,
          。
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
          (1)求數(shù)列{an}的通項公式;
          (2)設bn=an(2n-1),求數(shù)列{bn}的前n項的和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設數(shù)列an的前n項的和為Sna1=
          3
          2
          ,Sn=2an+1-3

          (1)求a2,a3;
          (2)求數(shù)列an的通項公式;
          (3)設bn=(2log
          3
          2
          an+1)•an
          ,求數(shù)列bn的前n項的和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設數(shù)列{an}的前n項和Sn=2an+
          3
          2
          ×(-1)n-
          1
          2
          ,n∈N*
          (Ⅰ)求an和an-1的關系式;
          (Ⅱ)求數(shù)列{an}的通項公式;
          (Ⅲ)證明:
          1
          S1
          +
          1
          S2
          +…+
          1
          Sn
          10
          9
          ,n∈N*

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          不等式組
          x≥0
          y≥0
          nx+y≤4n
          所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
          (1)寫出an+1與an的關系(只需給出結果,不需要過程),
          (2)求數(shù)列{an}的通項公式;
          (3)設數(shù)列an的前n項和為SnTn=
          Sn
          5•2n
          ,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•鄭州一模)設數(shù)列{an}的前n項和Sn=2n-1,則
          S4
          a3
          的值為(  )

          查看答案和解析>>