(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
(文)某種型號汽車的四個輪胎半徑相同,均為,該車的底盤與輪胎中心在同一水平面上. 該車的涉水安全要求是:水面不能超過它的底盤高度. 如圖所示:某處有一“坑形”地面,其中坑
形成頂角為
的等腰三角形,且
,如果地面上有
(
)高的積水(此時坑內(nèi)全是水,其它因素忽略不計).
(1)當(dāng)輪胎與、
同時接觸時,求證:此輪胎露在水面外的高度(從輪胎最上部到水面的距離)為
;
(2) 假定該汽車能順利通過這個坑(指汽車在過此坑時,符合涉水安全要求),求的最大值.
(精確到1cm).
(1)當(dāng)輪胎與、
同時接觸時,求出此輪胎露在水面外的高度即可證明
(2)16cm
【解析】
試題分析: (1) 當(dāng)輪胎與AB、BC同時接觸時,設(shè)輪胎與AB邊的切點為T,輪胎中心為O,則|OT|=40,由∠ABC=1200,知∠OBT=600, ……2分
故|OB|=. ……4分
所以,從B點到輪胎最上部的距離為+40, ……6分
此輪胎露在水面外的高度為d=+40-(
+h)=
,
從而得證. ……8分
(2)只要d40, ……12分
即40,解得h
16cm.,所以h的最大值為16cm. ……14分
考點:本小題主要考查函數(shù)在實際問題中的應(yīng)用,考查學(xué)生由實際問題向數(shù)學(xué)問題轉(zhuǎn)化的能力和運算求解能力.
點評:解決實際應(yīng)用題的關(guān)鍵是認(rèn)真讀題,正確將實際問題轉(zhuǎn)化為熟悉的數(shù)學(xué)問題.
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為
上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實數(shù)m的值
(Ⅱ)若ACRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點是⊙
:
上的任意一點,過
作
垂直
軸于
,動點
滿足
。
(1)求動點的軌跡方程;
(2)已知點,在動點
的軌跡上是否存在兩個不重合的兩點
、
,使
(O是坐標(biāo)原點),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根
,請求出一個長度為
的區(qū)間
,使
;如果沒有,請說明理由?(注:區(qū)間的長度為
).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com