日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在R上的函數(shù)y=f(x)滿足f(x+2)=f(x),當-1<x≤1時,f(x)=x3,則函數(shù)g(x)=f(x)-log5|x|的零點個數(shù)是
          6
          6
          分析:根據(jù)題意,由函數(shù)零點的判斷方法,函數(shù)g(x)=f(x)-log5|x|的零點個數(shù),即函數(shù)y=f(x)與y=log5|x|的交點的個數(shù),由函數(shù)圖象的變換,分別做出y=f(x)與y=log5|x|的圖象,分析其交點個數(shù),即可得答案.
          解答:解:根據(jù)題意,函數(shù)g(x)=f(x)-log5|x|的零點個數(shù),即函數(shù)y=f(x)與y=log5|x|的交點的個數(shù);
          f(x+2)=f(x),函數(shù)f(x)是周期為2的周期函數(shù),
          又由當-1<x≤1時,f(x)=x3,據(jù)此可以做出f(x)的圖象,
          y=log5|x|是偶函數(shù),當x>0時,y=log5x,則當x<0時,y=log5(-x),做出y=log5|x|的圖象,
          結(jié)合圖象分析可得:函數(shù)y=f(x)與y=log5|x|有6個交點,
          則g(x)=f(x)-log5|x|有6個零點,
          故答案為6.
          點評:本題考查函數(shù)圖象的變化與運用,涉及函數(shù)的周期性,對數(shù)函數(shù)的圖象等知識點,關(guān)鍵是作出函數(shù)的圖象,由此分析兩個函數(shù)圖象交點的個數(shù).
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知定義在R上的函數(shù)y=f(x)滿足下列條件:
          ①對任意的x∈R都有f(x+2)=f(x);
          ②若0≤x1<x2≤1,都有f(x1)>f(x2);
          ③y=f(x+1)是偶函數(shù),
          則下列不等式中正確的是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知定義在R上的函數(shù)f(x)滿足:f(x)=
          f(x-1)-f(x-2),x>0
          log2(1-x),       x≤0
            則:
          ①f(3)的值為
          0
          0
          ,
          ②f(2011)的值為
          -1
          -1

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時f(x)=
          1,(-1<x≤0)
          -1,(0<x≤1)
          ,則f(3)=( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知定義在R上的函數(shù)f(x)是偶函數(shù),對x∈R都有f(2+x)=f(2-x),當f(-3)=-2時,f(2013)的值為( 。
          A、-2B、2C、4D、-4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知定義在R上的函數(shù)f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對稱,則f(2013)=( 。
          A、0B、2013C、3D、-2013

          查看答案和解析>>

          同步練習冊答案