【題目】直線與曲線
有且僅有一個(gè)公共點(diǎn),則
的取值范圍是
A. B.
或
C.
D.
【答案】B
【解析】
把曲線方程整理后可知其圖象為半圓,進(jìn)而畫出圖象來,要使直線與曲線有且僅有一個(gè)交點(diǎn),
那么很容易從圖上看出其三個(gè)極端情況分別是:直線在第四象限與曲線相切,交曲線于(0,
﹣1)和另一個(gè)點(diǎn),及與曲線交于點(diǎn)(0,1),分別求出b,則b的范圍可得.
曲線有即 x2+y2=1 (x≥0),表示一個(gè)半圓(單位圓位于x軸及x軸右側(cè)的部分).
如圖,A(0,1)、B(1,0)、C(0,﹣1),
當(dāng)直線y=x+b經(jīng)過點(diǎn)A時(shí),1=0+b,求得 b=1;
當(dāng)直線y=x+b經(jīng)過點(diǎn)B、點(diǎn)C時(shí),0=1+b,求得b=﹣1;
當(dāng)直線y=x+b和半圓相切時(shí),由圓心到直線的距離等于半徑,可得1=,求得b=﹣
,
或 b=(舍去),
故要求的實(shí)數(shù)b的范圍為﹣1<b≤1或b=﹣,
故答案為:B
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),解不等式
;
(2)若關(guān)于的方程
在區(qū)間
上恰有一個(gè)實(shí)數(shù)解,求
的取值范圍;
(3)設(shè),若存在
使得函數(shù)
在區(qū)間
上的最大值和最小值的差不超過1,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面ABCD為矩形,點(diǎn)E在線段PA上,
平面BDE.
求證:
;
若
是等邊三角形,
,平面
平面ABCD,四棱錐
的體積為
,求點(diǎn)E到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)口袋有個(gè)白球,
個(gè)黑球,這些球除顏色外全部相同,現(xiàn)將口袋中的球隨機(jī)逐個(gè)取出,并依次放入編號為
,
,
,
的抽屜內(nèi).
(1)求編號為的抽屜內(nèi)放黑球的概率;
(2)口袋中的球放入抽屜后,隨機(jī)取出兩個(gè)抽屜中的球,求取出的兩個(gè)球是一黑一白的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有6個(gè)人站成前后二排,每排3人,若甲、乙兩人左右、前后均不相鄰,則不同的站法種數(shù)為
A. 384 B. 480 C. 768 D. 240
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓
的方程為
,點(diǎn)
為圓上的動(dòng)點(diǎn),過點(diǎn)
的直線
被圓
截得的弦長為
.
(1)求直線的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在實(shí)數(shù)對
,使得等式
對定義域中的任意
都成立,則稱函數(shù)
是“
型函數(shù)”.
(1)若函數(shù)是“
型函數(shù)”,且
,求出滿足條件的實(shí)數(shù)對
;
(2)已知函數(shù).函數(shù)
是“
型函數(shù)”,對應(yīng)的實(shí)數(shù)對
為
,當(dāng)
時(shí),
.若對任意
時(shí),都存在
,使得
,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
,以
表示不是
的因數(shù)的最小自然數(shù),例如
.若
,又可作
等等.如果
,那么
叫做
的長度.對一切
,
,用列舉法表示
的長度構(gòu)成的集合是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某樂園按時(shí)段收費(fèi),收費(fèi)標(biāo)準(zhǔn)為:每玩一次不超過小時(shí)收費(fèi)10元,超過
小時(shí)的部分每小時(shí)收費(fèi)
元(不足
小時(shí)的部分按
小時(shí)計(jì)算).現(xiàn)有甲、乙二人參與但都不超過
小時(shí),甲、乙二人在每個(gè)時(shí)段離場是等可能的。為吸引顧客,每個(gè)顧客可以參加一次抽獎(jiǎng)活動(dòng)。
(1) 用表示甲乙玩都不超過
小時(shí)的付費(fèi)情況,求甲、乙二人付費(fèi)之和為44元的概率;
(2)抽獎(jiǎng)活動(dòng)的規(guī)則是:顧客通過操作按鍵使電腦自動(dòng)產(chǎn)生兩個(gè)[0,1]之間的均勻隨機(jī)數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎(jiǎng)”,則該顧客中獎(jiǎng);若電腦顯示“謝謝”,則不中獎(jiǎng),求顧客中獎(jiǎng)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com