【題目】已知拋物線的焦點為
,
為過定點
的兩條直線.
(1)若與拋物線
均無交點,且
,求直線
的斜率
的取值范圍;
(2)若與拋物線
交于兩個不同的點
,以
為直徑的圓
過點
,求圓
的方程.
科目:高中數學 來源: 題型:
【題目】已知橢圓C1: +
=1(a>b>0)的離心率為
,P(﹣2,1)是C1上一點.
(1)求橢圓C1的方程;
(2)設A,B,Q是P分別關于兩坐標軸及坐標原點的對稱點,平行于AB的直線l交C1于異于P、Q的兩點C,D,點C關于原點的對稱點為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n,都有an= +2成立.
(1)記bn=log2an , 求數列{bn}的通項公式;
(2)設cn= ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以橢圓長、短軸四個端點為頂點為四邊形的面積為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點分別為、
,當動點
在定直線
上運動時,直線
分別交橢圓于兩點
、
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線l1:y=k1x+1,l2:y=k2x-1,其中實數k1,k2滿足k1k2+2=0. 證明:
(1)l1與l2相交;
(2)l1與l2的交點在曲線2x2+y2=1上.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,焦距為2,離心率
為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點作圓
的切線,切點分別為
,直線
與
軸交于點
,過點
的直線
交橢圓
于
兩點,點
關于
軸的對稱點為
,求
的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com