日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢C:(a>b>0),以橢圓短軸的一個頂點B與兩個焦點F1,F(xiàn)2為頂點的三角形周長是4+2,且∠BF1F2=
          (1)求橢圓C的標準方程;
          (2)若過點Q(1,)引曲線C的弦AB恰好被點Q平分,求弦AB所在的直線方程.
          【答案】分析:(1)利用以橢圓短軸的一個頂點B與兩個焦點F1,F(xiàn)2為頂點的三角形周長是4+2,且∠BF1F2=,建立方程,可求橢圓的幾何量,從而可得橢圓C的標準方程;
          (2)當斜率l不存在時,過點Q(1,)引曲線C的弦AB不被點Q平分;當直線l的斜率為k時,設(shè)方程與橢圓方程聯(lián)立,利用韋達定理及過點Q(1,)引曲線C的弦AB恰好被點Q平分,建立方程,即可求得結(jié)論.
          解答:解:(1)∵以橢圓短軸的一個頂點B與兩個焦點F1,F(xiàn)2為頂點的三角形周長是4+2,且∠BF1F2=
          ∴2a+2c=4+2,
          ∴a=2,c=

          ∴橢圓方程為
          (2)當直線l的斜率不存在時,過點Q(1,)引曲線C的弦AB不被點Q平分;
          當直線l的斜率為k時,l:y-=k(x-1)與橢圓方程聯(lián)立,消元可得(1+4k2)x2-4k(2k-1)x+(1-2k)2-4=0
          ∵過點Q(1,)引曲線C的弦AB恰好被點Q平分,
          ,
          ∴解得k=-

          ∴點Q在橢圓內(nèi)
          ∴直線l:y-=-(x-1),即l:y=-x+1.
          點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查弦中點問題,正確運用韋達定理是關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的焦點為F1,F(xiàn)2,P是橢圓上任意一點,若以坐標原點為圓心,橢圓短軸長為直徑的圓經(jīng)過橢圓的焦點,且△PF1F2的周長為4+2
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)直線的l是圓O:x2+y2=
          4
          3
          上動點P(x0,y0)(x0-y0≠0)處的切線,l與橢圓C交于不同的兩點Q,R,證明:∠QOR的大小為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          1
          2
          ,橢圓的短軸端點與雙曲線
          y2
          2
          -x2
          =1的焦點重合,過P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
          (Ⅰ)求橢C的方程;
          (Ⅱ)求
          OA
          OB
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢C:數(shù)學(xué)公式(a>b>0),以橢圓短軸的一個頂點B與兩個焦點F1,F(xiàn)2為頂點的三角形周長是4+2數(shù)學(xué)公式,且∠BF1F2=數(shù)學(xué)公式
          (1)求橢圓C的標準方程;
          (2)若過點Q(1,數(shù)學(xué)公式)引曲線C的弦AB恰好被點Q平分,求弦AB所在的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年上海市崇明縣高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

          已知橢C:(a>b>0),以橢圓短軸的一個頂點B與兩個焦點F1,F(xiàn)2為頂點的三角形周長是4+2,且∠BF1F2=
          (1)求橢圓C的標準方程;
          (2)若過點Q(1,)引曲線C的弦AB恰好被點Q平分,求弦AB所在的直線方程.

          查看答案和解析>>

          同步練習(xí)冊答案