日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 給定兩個命題,P:對任意實數(shù)x都有x2+ax+a>0成立;Q:關(guān)于x的方程x2-2x+a=0有實數(shù)根.若P或Q為真,P且Q為假,求實數(shù)a的取值范圍.
          分析:先對兩個命題進行化簡,再由P或Q為真命題,P且Q為假命題,轉(zhuǎn)化出等價條件,兩命題一真一假,由此條件求實數(shù)a的取值范圍即可.
          解答:解:若P為真:a=0時滿足
          a>0
          1=a2-4a<0
          ⇒0<a<4

          ∴0≤a<4,令A={a|0≤a<4};
          若Q為真:△2=4-4a≥0⇒a≤1,令B={a|a≤1}
          由題意:P或Q為真,P且Q為假,
          得:P和Q只能是一真一假,可能P真Q假或P假Q(mào)真,
          如果p真q假,則有0≤a<4,且a>1
          ∴1<a<4;
          如果p假q真,則有a<0,或a≥4,且a≤1
          ∴a<0;
          所以實數(shù)a的取值范圍為(-∞,0)∪( 1,4).
          點評:本題考查的知識點是命題的真假判斷與應用,復合命題的真假,函數(shù)恒成立問題,其中判斷出命題p與命題q為真時,實數(shù)a的取值范圍,是解答本題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          給定兩個命題,P:對任意實數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2-x+a=0有實數(shù)根;如果P與Q中有且僅有一個為真命題,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          給定兩個命題,P:對任意實數(shù)x都有ax2+ax+1>0恒成立;Q:a2+8a-20<0.如果P∨Q為真命題,P∧Q為假命題,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          給定兩個命題,P:對任意實數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2-x+a=0有實數(shù)根;如果“P∧Q”為假,且“P∨Q”為真,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          給定兩個命題,P:對任意實數(shù)x都有x2+ax+4>0恒成立;Q:函數(shù)f(x)=x2-2ax+3在區(qū)間(1,+∞)上單調(diào)遞增.如果P∨Q為真命題,P∧Q為假命題,求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習冊答案