日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,O為坐標(biāo)原點(diǎn),橢圓C1 + =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e1;雙曲線C2 =1的左、右焦點(diǎn)分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.

          (1)求C1、C2的方程;
          (2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點(diǎn),當(dāng)直線OM與C2交于P,Q兩點(diǎn)時(shí),求四邊形APBQ面積的最小值.

          【答案】
          (1)解:由題意可知, ,且

          ∵e1e2= ,且|F2F4|= ﹣1.

          ,且

          解得:

          ∴橢圓C1的方程為 ,雙曲線C2的方程為 ;


          (2)解:由(1)可得F1(﹣1,0).

          ∵直線AB不垂直于y軸,

          ∴設(shè)AB的方程為x=ny﹣1,

          聯(lián)立 ,得(n2+2)y2﹣2ny﹣1=0.

          設(shè)A(x1,y1),B(x2,y2),M(x0,y0),

          ,

          = =

          ∵M(jìn)在直線AB上,

          直線PQ的方程為 ,

          聯(lián)立 ,得

          解得 ,代入

          由2﹣n2>0,得﹣ <n<

          ∴P,Q的坐標(biāo)分別為

          則P,Q到AB的距離分別為:

          ∵P,Q在直線A,B的兩端,

          則四邊形APBQ的面積S= |AB|

          ∴當(dāng)n2=0,即n=0時(shí),四邊形APBQ面積取得最小值2.


          【解析】(1)由斜率公式寫出e1 , e2 , 把雙曲線的焦點(diǎn)用含有a,b的代數(shù)式表示,結(jié)合已知條件列關(guān)于a,b的方程組求解a,b的值,則圓錐曲線方程可求;(2)設(shè)出AB所在直線方程,和橢圓方程聯(lián)立后得到關(guān)于y的一元二次方程,由根與系數(shù)的關(guān)系得到AB中點(diǎn)M的坐標(biāo),并由橢圓的焦點(diǎn)弦公式求出AB的長度,寫出PQ的方程,和雙曲線聯(lián)立后解出P,Q的坐標(biāo),由點(diǎn)到直線的距離公式分別求出P,Q到AB的距離,然后代入代入三角形面積公式得四邊形APBQ的面積,再由關(guān)于n的函數(shù)的單調(diào)性求得最值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為4的菱形中,,現(xiàn)沿對角線折起,折起后使的余弦值為

          (1)求證:平面平面;

          (2)若的中點(diǎn),求三棱錐的體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0. (Ⅰ)求證:對m∈R,直線l與圓C總有兩個不同交點(diǎn);
          (Ⅱ)設(shè)l與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
          (Ⅲ)若定點(diǎn)P(1,1)分弦AB為 = ,求此時(shí)直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應(yīng)值如下表:

          x

          y

          ﹣1

          1

          3

          1

          ﹣1

          1

          3


          (1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式.
          (2)根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)(k>0)周期為 ,當(dāng) 時(shí),方程f(kx)=m恰有兩個不同的解,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】海南大學(xué)某餐飲中心為了解新生的飲食習(xí)慣,在全校新生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

          喜歡甜品

          不喜歡甜品

          合計(jì)

          南方學(xué)生

          60

          20

          80

          北方學(xué)生

          10

          10

          20

          合計(jì)

          70

          30

          100

          (Ⅰ)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

          (Ⅱ)已知在被調(diào)查的北方學(xué)生中有5名中文系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.

          附:,K2

          P(K2k0)

          0.10

          0.05

          0.010

          k0

          2.706

          3.841

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】本小題滿分12分,1小問5分,2小問7分

          圖,橢圓的左、右焦點(diǎn)分別為的直線交橢圓于兩點(diǎn),且

          1,求橢圓的標(biāo)準(zhǔn)方程

          2求橢圓的離心率

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
          (1)若數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
          (2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
          (3)證明:對任意的等差數(shù)列{an},總存在兩個“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】空間四邊形ABCD中,AB=CD且異面直線AB與CD所成的角為30°,E,F(xiàn)為BC和AD的中點(diǎn),則異面直線EF和AB所成的角為(
          A.15°
          B.30°
          C.45°或75°
          D.15°或75°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C:x2+y2﹣4x﹣6y+12=0,點(diǎn)A(3,5).
          (1)求過點(diǎn)A的圓的切線方程;
          (2)O點(diǎn)是坐標(biāo)原點(diǎn),連接OA,OC,求△AOC的面積S.

          查看答案和解析>>

          同步練習(xí)冊答案