日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}滿(mǎn)足a1=1,點(diǎn)(an•an+1)在直線y=2x+1上,數(shù)列{bn}滿(mǎn)足b1=a1,
          bn
          an
          =
          1
          a1
          +
          1
          a2
          +…+
          1
          an-1
          (n≥2).

          (1)求bn+1an-(bn+1)an+1的值;
          (2)求證:(1+b1)(1+b2)•…•(1+bn)<
          10
          3
          b1b2•…•bn(n∈Nh*).
          分析:(1)把點(diǎn)(an•an+1)代入直線方程求得數(shù)列的遞推式,整理得an+1+1=2(an+1),判斷出{an+1}是以2為首項(xiàng),2為公比的等比數(shù)列,進(jìn)而根據(jù)等比數(shù)列的通項(xiàng)公式求得an.同時(shí)根據(jù)
          bn
          an
          =
          1
          a1
          +
          1
          a2
          +••+
          1
          an-1
          (n≥2)
          求得
          bn+1
          an+1
          =
          1
          a1
          +
          1
          a2
          +••+
          1
          an-1
          +
          1
          an
          ,進(jìn)而判斷出
          bn+1
          an+1
          =
          bn
          an
          +
          1
          an
          整理得bn+1an-(bn+1)an+1=0,進(jìn)而看當(dāng)n=1時(shí)b2a1-(b1+1)a2=-3.,綜合可得答案.
          (2)根據(jù)(1)可知
          bn+1
          bn+1
          =
          an
          an+1
          (n≥2)
          進(jìn)而求得(1+
          1
          b1
          )(1+
          1
          b2
          )••(1+
          1
          bn
          )
          =2(
          1
          a1
          +
          1
          a2
          +…+
          1
          an
          )
          ,先看當(dāng)k≥2時(shí)求得
          1
          ak
          -
          1
          2k-1
          =
          2k+1-1
          (2k-1)(2k+1-1)
          2k+1
          (2k-1)(2k+1-1)
          ,進(jìn)而可知(1+
          1
          b1
          )(1+
          1
          b2
          )••(1+bn)<
          10
          3
          b1b2••bn.
          進(jìn)而再看n=1時(shí)不等式也成立.原式得證.
          解答:解:(1)∵點(diǎn)(an,an+1)在直線y=2x+1上,∴an+1=2an+1∴an+1+1=2(an+1),
          即(an+1)是以2為首項(xiàng),2為公比的等比數(shù)列∴an=2n-1
          bn
          an
          =
          1
          a1
          +
          1
          a2
          +…+
          1
          an-1
          (n≥2)

          bn+1
          an+1
          =
          1
          a1
          +
          1
          a2
          +…+
          1
          an-1
          +
          1
          an

          bn+1
          an+1
          =
          bn
          an
          +
          1
          an

          ∴bn+1an-(bn+1)an+1=0(n≥2)
          當(dāng)n=1時(shí),b1=a1=1,b2=a2=3
          則b2a1-(b1+1)a2=-3.

          (2)由(1)知
          bn+1
          bn+1
          =
          an
          an+1
          (n≥2),b2=a2

          (1+
          1
          b1
          )(1+
          1
          b2
          )••(1+
          1
          bn
          )=
          b1+1
          b1
          b2+1
          b2
          ••
          bn+1
          bn
          =
          1
          b1
          b1+1
          b2
          b2+1
          b3
          ••
          bn-1
          bn
          bn+1
          bn+1
          bn+1=
          1
          b1
          b1+1
          b2
          a2
          a3
          a3
          a4
          an-1
          an
          an
          an+1
          bn+1=2•
          bn+1
          an+1
          =2(
          1
          a1
          +
          1
          a2
          +…+
          1
          an
          )

          ∵k≥2時(shí),
          1
          ak
          -
          1
          2k-1
          =
          2k+1-1
          (2k-1)(2k+1-1)
          2k+1
          (2k-1)(2k+1-1)
          =2(
          1
          2k-1
          -
          1
          2k+1-1
          )

          1
          a1
          +
          1
          a2
          +…+
          1
          an
          =1+
          1
          3
          +••+
          1
          2n-1
          <1+2[(
          1
          22-1
          -
          1
          23-1
          )+
          ••+(
          1
          2n-1
          -
          1
          2n+1-1
          )]=1+2(
          1
          3
          -
          1
          2n+1-1
          )<
          5
          3

          (1+
          1
          b1
          )(1+
          1
          b2
          )••(1+bn)<
          10
          3
          b1b2••bn.

          另證:當(dāng)n≥2時(shí)2n-2≥1(僅當(dāng)n=2取等號(hào))
          ∴2n-1≥3•2n-2,即
          1
          an
          -
          1
          2n-1
          1
          3
          1
          2n-2
          (n≥2)

          ∴當(dāng)n≥2時(shí),
          1
          a1
          +
          1
          a2
          +…+
          1
          an
          ≤1+
          1
          3
          (1+
          1
          2
          +…+
          1
          2n-2
          )=1+
          1
          3
          1-
          1
          2n-1
          1-
          1
          2
          =
          5
          3
          -
          1
          2n-2
          5
          3

          而n=1顯然成立
          (1+
          1
          b1
          )(1+
          1
          b2
          )••(1+
          1
          bn
          )<
          10
          3

          (1+b1)(1+b2)••(1+bn)<
          10
          3
          b1b2••bn.
          點(diǎn)評(píng):本題主要考查了不等式和數(shù)列的綜合,數(shù)列通項(xiàng)公式的確定,考查了學(xué)生綜合運(yùn)用不等式和數(shù)列知識(shí)解決問(wèn)題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿(mǎn)足:a1=1且an+1=
          3+4an
          12-4an
          , n∈N*

          (1)若數(shù)列{bn}滿(mǎn)足:bn=
          1
          an-
          1
          2
          (n∈N*)
          ,試證明數(shù)列bn-1是等比數(shù)列;
          (2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
          (3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿(mǎn)足
          1
          2
          a1+
          1
          22
          a2+
          1
          23
          a3+…+
          1
          2n
          an=2n+1
          則{an}的通項(xiàng)公式
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿(mǎn)足:a1=
          3
          2
          ,且an=
          3nan-1
          2an-1+n-1
          (n≥2,n∈N*).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿(mǎn)足an+1=|an-1|(n∈N*
          (1)若a1=
          54
          ,求an
          (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•北京模擬)已知數(shù)列{an}滿(mǎn)足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
          2n-1
          2n-1

          查看答案和解析>>

          同步練習(xí)冊(cè)答案