日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-
          12
          對(duì)稱,且f′(1)=0
          (Ⅰ)求實(shí)數(shù)a,b的值
          (Ⅱ)求函數(shù)f(x)的極值.
          分析:(Ⅰ)先對(duì)f(x)求導(dǎo),f(x)的導(dǎo)數(shù)為二次函數(shù),由對(duì)稱性可求得a,再由f′(1)=0即可求出b
          (Ⅱ)對(duì)f(x)求導(dǎo),分別令f′(x)大于0和小于0,即可解出f(x)的單調(diào)區(qū)間,繼而確定極值.
          解答:解:(Ⅰ)因f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b
          從而f′(x)=6(x+
          a
          6
          )
          2
          +b-
          a2
          6
          ,即
          y=f′(x)關(guān)于直線x=-
          a
          6
          對(duì)稱,
          從而由條件可知-
          a
          6
          =-
          1
          2
          ,解得a=3
          又由于f′(x)=0,即6+2a+b=0,解得b=-12
          (Ⅱ)由(Ⅰ)知f(x)=2x3+3x2-12x+1
          f′(x)=6x2+6x-12=6(x-1)(x+2)
          令f′(x)=0,得x=1或x=-2
          當(dāng)x∈(-∞,-2)時(shí),f′(x)>0,f(x)在(-∞,-2)上是增函數(shù);
          當(dāng)x∈(-2,1)時(shí),f′(x)<0,f(x)在(-2,1)上是減函數(shù);
          當(dāng)x∈(1,+∞)時(shí),f′(x)>0,f(x)在(1,+∞)上是增函數(shù).
          從而f(x)在x=-2處取到極大值f(-2)=21,在x=1處取到極小值f(1)=-6.
          點(diǎn)評(píng):本題考查函數(shù)的對(duì)稱性、函數(shù)的單調(diào)區(qū)間和極值,考查運(yùn)算能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f'(x)的圖象關(guān)于直線x=-
          1
          2
          對(duì)稱,且f′(1)=0.
          (Ⅰ)求實(shí)數(shù)a,b的值;
          (Ⅱ)若對(duì)于任意實(shí)數(shù)x,
          1
          6
          f′(x)+m>0
          恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省天水市甘谷一中高三(上)第一次檢測(cè)數(shù)學(xué)試卷 (文科)(解析版) 題型:解答題

          設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0
          (Ⅰ)求實(shí)數(shù)a,b的值
          (Ⅱ)求函數(shù)f(x)的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州市永春六中高三(上)8月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0
          (Ⅰ)求實(shí)數(shù)a,b的值
          (Ⅱ)求函數(shù)f(x)的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年重慶市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=-對(duì)稱,且f′(1)=0
          (Ⅰ)求實(shí)數(shù)a,b的值
          (Ⅱ)求函數(shù)f(x)的極值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案