日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=
          12
          ,AD=1.
          (I)求證:CD⊥平面PAC
          (II)求二面角A-PD-C的余弦值.
          分析:(I)先證明 PA⊥底面ABCD,可得 PA⊥CD.再根據(jù)AC2+CD2=AD2,可得AC⊥CD.再利用直線和平面垂直的判定定理證得CD⊥平面PAC.
          (II)設(shè)G為AD中點(diǎn),連結(jié)CG,過G作GH⊥PD于H,證明∠GHC 是二面角A-PD-C的平面角.由Rt△PAD和 Rt△GHD相似得
          GH
          PA
          =
          DG
          DP
          ,求得 GH=
          1
          5
          ,和 CH 的值,可得cos∠GHC=
          GH
          CH
          的值.
          解答:解:(I)∵∠PAD=90°,側(cè)面PAD⊥底面ABCD,
          側(cè)面PAD∩底面ABCD=AD,PA?平面PAD,
          ∴PA⊥底面ABCD.
          ∵CD?底面ABCD,∴PA⊥CD.
          在底面ABCD中,∵∠ABC=∠PAD=90°,PA=AB=BC=
          1
          2
          ,AD=1,
          ∴AC=CD=
          2
          ,AC2+CD2=AD2,∴AC⊥CD.
          又∵PA∩AC=A,∴CD⊥平面PAC.
          (II)設(shè)G為AD中點(diǎn),連結(jié)CG,則CG⊥AD.
          又∵平面ABCD⊥平面PAD,平面ABCD∩平面PAD=AD,CG?平面 ABCD,∴CG⊥平面PAD.
          ∵PD?平面 PAD,∴CG⊥PD.
          過G作GH⊥PD于H,∵CG∩GH=G,∴PD⊥平面 CGH,∴CH⊥PD,∴∠GHC 是二面角A-PD-C的平面角.
          由已知得AD=2,PA=AB=CG=DG=1,∴DP=
          5

          由Rt△PAD和 Rt△GHD相似得
          GH
          PA
          =
          DG
          DP
          ,∴GH=
          1
          5
          ,∴CH=
          CG2+GH2
          =
          1+
          1
          5
          =
          6
          5
          ,
          ∴cos∠GHC=
          GH
          CH
          =
          1
          5
          6
          5
          =
          6
          6
          ,即二面角A-PD-C的余弦值為
          6
          6
          點(diǎn)評(píng):本題主要考查直線和平面垂直的判定定理的應(yīng)用,求二面角的平面角,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
          2
          ,∠PAB=60°.
          (1)證明AD⊥PB;
          (2)求二面角P-BD-A的正切值大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
          (1)求證:AG∥平面PEC;
          (2)求AE的長;
          (3)求二面角E-PC-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
          (Ⅰ)求證:平面PBD⊥平面PAC.
          (Ⅱ)求四棱錐P-ABCD的體積V.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
          (1)求證;平面ACE⊥面ABCD;
          (2)求三棱錐P-EDC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
          (1)求二面角P-CD-A的平面角正切值,
          (2)求A到面PCD的距離.

          查看答案和解析>>

          同步練習(xí)冊答案